Research Outputs

Now showing 1 - 2 of 2
  • Publication
    Study of the anisotropic tensile and compressive strength of a foliated phyllite
    (Emerald Publishing Limited, 2023) ;
    Rodríguez, Paula
    ;
    Vera, Miguel
    Anisotropy is an important characteristic of rocks, especially distinguishable in metamorphic rocks. Transverse isotropy is a particular case of anisotropy where foliation planes are distributed in the rock mass. Anisotropy can also originate from mineral foliation where minerals are oriented in a preferential direction. This inherent anisotropy can affect the rock strength significantly. Here the effect of foliation on the anisotropic strength of a phyllite is experimentally investigated. Phyllite specimens with defined foliation orientations are prepared and a series of laboratory tests carried out. Results for tensile strength and unconfined compressive strength are analysed. Maximum values of tensile strength and unconfined compressive strength are found for β = 0 and 90° and a significant reduction of strength is found for β = 45°. Compressive triaxial tests are conducted under confining pressures up to 20 MPa. The Hoek–Brown failure criterion is found to capture the experimental results in a better form than the Mohr–Coulomb criterion. Anisotropy indexes are adopted to evaluate the anisotropy effect on strength. Confinement is found to reduce the effect of anisotropy on phyllite strength. Cohesion and angle of shearing resistance were also found to be affected by the stress level, and further influenced by β.
  • Publication
    Study of the anisotropic elastic response of a foliated phyllite
    (ICE Publishing, 2022) ;
    Rodríguez, Paula
    ;
    Vera, Miguel
    Anisotropy is a crucial characteristic of metamorphic rocks whereby minerals oriented in a preferential direction can originate mineral foliation. Inherent anisotropy can affect the rock behaviour significantly. Transverse isotropy is a particular case of anisotropy where foliation planes are distributed in the rock mass. Therefore, in this study the anisotropy effect on the elastic properties of a foliated phyllite is considered. To this end, a series of laboratory tests was programmed. Triaxial tests were carried out under confining pressures up to 20 MPa. Elastic parameters such as elasticity modulus, E, and Poisson's ratio, ν, are assessed from triaxial test results as well as from ultrasonic tests, where compression and shear wave velocities are determined. Empirical relationships for elastic parameters are suggested as a function of foliation angle, β, and confinement. In addition, anisotropy indexes are adopted to evaluate results, comparing when possible with those of previous works. It was found that E increases with confinement; however, the effect of anisotropy on E reduces with confinement. It was also found that ν is affected by β but not by confinement.