Research Outputs

Now showing 1 - 10 of 23
  • Thumbnail Image
    Publication
    CLASS angular power spectra and map-component analysis for 40 GHz observations through 2022
    (IOP Publishing, 2024) ;
    Eimer, Joseph
    ;
    Li, Yunyang
    ;
    Brewer, Michael
    ;
    Shi, Rui
    ;
    Ali, Aamir
    ;
    Appel, John
    ;
    Bennett, Charles
    ;
    Bruno, Sarah
    ;
    Chuss, David
    ;
    Cleary, Joseph
    ;
    Dahal, Sumit
    ;
    Datta, Rahul
    ;
    Denes-Couto, Jullianna
    ;
    Denis, Kevin
    ;
    DĂ¼nner, Rolando
    ;
    Essinger-Hileman, Thomas
    ;
    FluxĂ¡, Pedro
    ;
    Hubmayer, Johannes
    ;
    Harrington, Kathleen
    ;
    Iuliano, Jeffrey
    ;
    Karakla, John
    ;
    Marriage, Tobias
    ;
    NĂºĂ±ez, Carolina
    ;
    Parker, Lucas
    ;
    Petroff, Matthew
    ;
    Reeves, Rodrigo
    ;
    Rostem, Karwan
    ;
    Valle, Deniz
    ;
    Watts, Duncan
    ;
    Weiland, Janet
    ;
    Wollack, Edward
    ;
    Xu, Zhilei
    ;
    Zeng, Lingzhen
    Measurement of the largest angular scale (â„“ < 30) features of the cosmic microwave background (CMB) polarization is a powerful way to constrain the optical depth to reionization and search for the signature of inflation through the detection of primordial B-modes. We present an analysis of maps covering 73.6% of the sky made from the 40 GHz channel of the Cosmology Large Angular Scale Surveyor (CLASS) from 2016 August to 2022 May. Taking advantage of the measurement stability enabled by front-end polarization modulation and excellent conditions from the Atacama Desert, we show this channel achieves higher sensitivity than the analogous frequencies from satellite measurements in the range 10 < â„“ < 100. Simulations show the CLASS linear (circular) polarization maps have a white noise level of 125(130) uK arcmin. We measure the Galaxy-masked EE and BB spectra of diffuse synchrotron radiation and compare to space-based measurements at similar frequencies. In combination with external data, we expand measurements of the spatial variations of the synchrotron spectral energy density (SED) to include new sky regions and measure the diffuse SED in the harmonic domain. We place a new upper limit on a background of circular polarization in the range 5 < â„“ < 125 with the first bin showing Dâ„“ < 0.023 uK2CMB at 95% confidence. These results establish a new standard for recovery of the largest-scale CMB polarization from the ground and signal exciting possibilities when the higher sensitivity and higher-frequency CLASS channels are included in the analysis.
  • Thumbnail Image
    Publication
    Simulating the detection of the global 21 cm Signal with MIST for different models of the soil and beam directivity
    (IOP Publishing, 2024) ;
    Monsalve-Jara, Raul
    ;
    Bye, Christian
    ;
    Sievers, Jonathan
    ;
    Bidula, Vadym
    ;
    Chiang, H.
    ;
    Guo, Xinze
    ;
    Hendricksen, Ian
    ;
    McGee, Francis
    ;
    Mena, F.
    ;
    Prabhakar, Garima
    ;
    Restrepo, Oscar
    ;
    Thyagarajan, Nithyanandan
    The Mapper of the IGM Spin Temperature (MIST) is a new ground-based, single-antenna, radio experiment attempting to detect the global 21 cm signal from the Dark Ages and Cosmic Dawn. A significant challenge in this measurement is the frequency dependence, or chromaticity, of the antenna beam directivity. MIST observes with the antenna above the soil and without a metal ground plane, and the beam directivity is sensitive to the electrical characteristics of the soil. In this paper, we use simulated observations with MIST to study how the detection of the global 21 cm signal from Cosmic Dawn is affected by the soil and the MIST beam directivity. We simulate observations using electromagnetic models of the directivity computed for single- and two-layer models of the soil. We test the recovery of the Cosmic Dawn signal with and without beam chromaticity correction applied to the simulated data. We find that our single-layer soil models enable a straightforward recovery of the signal even without chromaticity correction. Two-layer models increase the beam chromaticity and make the recovery more challenging. However, for the model in which the bottom soil layer has a lower electrical conductivity than the top layer, the signal can be recovered even without chromaticity correction. For the other two-layer models, chromaticity correction is necessary for the recovery of the signal, and the accuracy requirements for the soil parameters vary between models. These results will be used as a guideline to select observation sites that are favorable for the detection of the Cosmic Dawn signal.
  • Thumbnail Image
    Publication
    Sensitivity-improved polarization maps at 40 GHz with CLASS and WMAP data
    (IOP Publishing, 2024) ;
    Shi, Rui
    ;
    Appel, John
    ;
    Bennett, Charles
    ;
    Chuss, David
    ;
    Dahal, Sumit
    ;
    Denes Couto, Jullianna
    ;
    Eimer, Joseph
    ;
    Essinger-Hileman, Thomas
    ;
    Harrington, Kathleen
    ;
    Iuliano, Jeffrey
    ;
    Li, Yunyang
    ;
    Marriage, Tobias
    ;
    Petroff, Matthew
    ;
    Rostem, Karwan
    ;
    Song, Zeya
    ;
    Valle, Deniz
    ;
    Watts, Duncan
    ;
    Weiland, Janet
    ;
    Wollack, Edward
    ;
    Xu, Zhilei
    Improved polarization measurements at frequencies below 70 GHz with degree-level angular resolution are crucial for advancing our understanding of the Galactic synchrotron radiation and the potential polarized anomalous microwave emission and ultimately benefiting the detection of primordial B modes. In this study, we present sensitivity-improved 40 GHz polarization maps obtained by combining the CLASS 40 GHz and Wilkinson Microwave Anisotropy Probe (WMAP) Q-band data through a weighted average in the harmonic domain. The decision to include WMAP Q-band data stems from similarities in the bandpasses. Leveraging the accurate large-scale measurements from the WMAP Q band and the high-sensitivity information from the CLASS 40 GHz band at intermediate scales, the noise level at â„“ ä [30, 100] is reduced by a factor of 2–3 in the map space. A pixel domain analysis of the polarized synchrotron spectral index (βs) using the WMAP K band and the combined maps (mean and 16th/84th percentiles across the βs map: -3.08 +0.20-0.20) reveals a stronger preference for spatial variation (probability to exceed for a uniform βs hypothesis smaller than 0.001) than the results obtained using WMAP K and Ka bands (-3.08 +0.14-0.14). The cross-power spectra of the combined maps follow the same trend as other low-frequency data, and validation through simulations indicates negligible bias introduced by the combination method (subpercent level in the power spectra). The products of this work are publicly available on LAMBDA (https://lambda.gsfc.nasa.gov/product/class/class_prod_table.html).
  • Thumbnail Image
    Publication
    Mapper of the IGM spin temperature: Instrument overview
    (Oxford Academic, 2024) ;
    Monsalve, R.
    ;
    Altamirano, C.
    ;
    Bidula, V.
    ;
    Bye, C.
    ;
    Chiang, H.
    ;
    DĂ­az, M.
    ;
    FernĂ¡ndez, B.
    ;
    Guo, X.
    ;
    Hendricksen, I.
    ;
    Hornecker, E.
    ;
    Lucero, F.
    ;
    Mani, H.
    ;
    McGee, F.
    ;
    Mena, F.
    ;
    PessĂ´a, M.
    ;
    Prabhakar, G.
    ;
    Restrepo, O.
    ;
    Sievers, J.
    ;
    Thyagarajan, N.
    The observation of the global 21 cm signal produced by neutral hydrogen gas in the intergalactic medium (IGM) during the Dark Ages, Cosmic Dawn, and Epoch of Reionization requires measurements with extremely well-calibrated wideband radiometers. We describe the design and characterization of the Mapper of the IGM Spin Temperature (MIST), which is a new ground-based, single-antenna, global 21 cm experiment. The design of MIST was guided by the objectives of avoiding systematics from an antenna ground plane and cables around the antenna, as well as maximizing the instrument’s on-sky efficiency and portability for operations at remote sites. We have built two MIST instruments, which observe in the range 25–105 MHz. For the 21 cm signal, this frequency range approximately corresponds to redshifts 55.5 &gt; z &gt; 12.5, encompassing the Dark Ages and Cosmic Dawn. The MIST antenna is a horizontal blade dipole of 2.42 m in length, 60 cm in width, and 52 cm in height above the ground. This antenna operates without a metal ground plane. The instruments run on 12 V batteries and have a maximum power consumption of 17 W. The batteries and electronics are contained in a single receiver box located under the antenna. We present the characterization of the instruments using electromagnetic simulations and lab measurements. We also show sample sky measurements from recent observations at remote sites in California, Nevada, and the Canadian High Arctic. These measurements indicate that the instruments perform as expected. Detailed analyses of the sky measurements are left for future work.
  • Thumbnail Image
    Publication
    Cosmology Large Angular Scale Surveyor (CLASS): 90 GHz telescope pointing, beam profile, window function, and polarization performance
    (American Astronomical Society, 2024) ;
    Datta, Rahul
    ;
    Brewer, Michael
    ;
    Couto, Jullianna
    ;
    Eimer, Joseph
    ;
    Li, Yunyang
    ;
    Xu, Zhilei
    ;
    Ali, Aamir
    ;
    Appel, John
    ;
    Bennett, Charles
    ;
    Chuss, David
    ;
    Cleary, Joseph
    ;
    Dahal, Sumit
    ;
    Raul Javier Espinoza Inostroza, Francisco
    ;
    Essinger-Hileman, Thomas
    ;
    FluxĂ¡, Pedro
    ;
    Harrington, Kathleen
    ;
    Helson, Kyle
    ;
    Iuliano, Jeffrey
    ;
    Karakla, John
    ;
    Marriage, Tobias
    ;
    Novack, Sasha
    ;
    NĂºĂ±ez, Carolina
    ;
    Padilla, Ivan
    ;
    Parker, Lucas
    ;
    Petroff, Matthew
    ;
    Reeves, Rodrigo
    ;
    Rostem, Karwan
    ;
    Shi, Rui
    ;
    Valle, Deniz
    ;
    Watts, Duncan
    ;
    Weiland, Janet
    ;
    Wollack, Edward
    ;
    Zeng, Lingzhen
    The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background (CMB) over ∼75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the large angular scale CMB polarization to constrain the tensor-to-scalar ratio and the optical depth to last scattering. This paper presents the optical characterization of the 90 GHz telescope. Observations of the Moon establish the pointing while dedicated observations of Jupiter are used for beam calibration. The standard deviations of the pointing error in azimuth, elevation, and boresight angle are 1 3, 2 1, and 2 0, respectively, over the first 3 yr of observations. This corresponds to a pointing uncertainty ∼7% of the beam’s full width at half-maximum (FWHM). The effective azimuthally symmetrized instrument 1D beam estimated at 90 GHz has an FWHM of 0°. 620 ± 0°.003 and a solid angle of 138.7 ± 0.6(stats.) ± 1.1(sys.) μsr integrated to a radius of 4°. The corresponding beam window function drops to bâ„“ = 0.93, 0.71, 0.14 2 at â„“ = 30, 100, 300, respectively. Far-sidelobes are studied using detector-centered intensity maps of the Moon and measured to be at a level of 10−3 or below relative to the peak. The polarization angle of Tau A estimated from preliminary survey maps is 149°.6 ± 0°.2(stats.) in equatorial coordinates. The instrumental temperature-to-polarization (T → P) leakage fraction, inferred from per-detector demodulated Jupiter scan data, has a monopole component at the level of 1.7 Ă— 10−3, a dipole component with an amplitude of 4.3 Ă— 10−3, with no evidence of quadrupolar leakage.
  • Thumbnail Image
    Publication
    Microwave observations of Venus with CLASS
    (IOP Publishing, 2023) ;
    Dahal, Sumit
    ;
    Brewer, Michael
    ;
    Akins, Alex
    ;
    Appel, John
    ;
    Bennett, Charles
    ;
    Cleary, Joseph
    ;
    Couto, Jullianna
    ;
    Datta, Rahul
    ;
    Eimer, Joseph
    ;
    Essinger-Hileman, Thomas
    ;
    Iuliano, Jeffrey
    ;
    Li, Yunyang
    ;
    Marriage, Tobias
    ;
    NĂºĂ±ez, Carolina
    ;
    Petroff, Matthew
    ;
    Reeves, Rodrigo
    ;
    Rostem, Karwan
    ;
    Shi, Rui
    ;
    Valle, Deniz
    ;
    Watts, Duncan
    ;
    Weiland, Janet
    ;
    Wollack, Edward
    ;
    Xu, Zhilei
    We report on the disk-averaged absolute brightness temperatures of Venus measured at four microwave frequency bands with the Cosmology Large Angular Scale Surveyor. We measure temperatures of 432.3 ± 2.8, 355.6 ± 1.3, 317.9 ± 1.7, and 294.7 ± 1.9 K for frequency bands centered at 38.8, 93.7, 147.9, and 217.5 GHz, respectively. We do not observe any dependence of the measured brightness temperatures on solar illumination for all four frequency bands. A joint analysis of our measurements with lower-frequency Very Large Array observations suggests relatively warmer (∼7 K higher) mean atmospheric temperatures and lower abundances of microwave continuum absorbers than those inferred from prior radio occultation measurements.
  • Publication
    Optimization of antenna performance for global 21 cm observations and verification using scaled copies
    (Journal of Astronomical Instrumentation, 2023)
    Restrepo, O.
    ;
    Lucero, F.
    ;
    Chaparro, G.
    ;
    RodrĂ­guez, R.
    ;
    Pizarro, F.
    ;
    ;
    DĂ­az, M.
    ;
    Mena, F.
    The sky-averaged cosmological 21 cm signal can improve our understanding of the evolution of the early Universe from the Dark Age to the end of the Epoch of Reionization. Although the EDGES experiment reported an absorption profile of this signal, there have been concerns about the plausibility of these results, motivating independent validation experiments. One of these initiatives is the Mapper of the IGM Spin Temperature (MIST), which is planned to be deployed at different remote locations around the world. One of its key features is that it seeks to comprehensively compensate for systematic uncertainties through detailed modeling and characterization of its different instrumental subsystems, particularly its antenna. Here we propose a novel optimizing scheme which can be used to design an antenna applied to MIST, improving bandwidth, return loss, and beam chromaticity. This new procedure combines the Particle Swarm Optimization (PSO) algorithm with a commercial electromagnetic simulation software (HFSS). We improved the performance of two antenna models: a rectangular blade antenna, similar to the one used in the EDGES experiment, and a trapezoidal bow-tie antenna. Although the performance of both antennas improved after applying our optimization method, we found that our bow-tie model outperforms the blade antenna by achieving lower reflection losses and beam chromaticity in the entire band of interest. To further validate the optimization process, we also built and characterized 1:20 scale models of both antenna types showing an excellent agreement with our simulations.
  • Publication
    On-Sky performance of new 90 GHz detectors for the Cosmology Large Angular Scale Surveyor (CLASS)
    (IEEE Transactions on Applied Superconductivity, 2023)
    NĂºĂ±ez, Carolina
    ;
    Appel, John
    ;
    Brewer,Michael
    ;
    Bruno, Sarah|Rahul,Datta
    ;
    Bennett, Charles
    ;
    ;
    Chuss, David
    ;
    Sumit,Dahal
    ;
    Denis, Kevin
    ;
    Eimer, José
    ;
    Essinger-Hileman,Thomas
    ;
    Helson, Kyle
    ;
    Matrimonio, Tobias
    ;
    Morales-PĂ©rez ,Carolina
    ;
    Padilla, Ivan
    ;
    A. Petroff, Mateo
    ;
    Rostem, Karwan
    ;
    Watts, Duncan
    ;
    Wollack, Edward
    ;
    Zhilei Xu
    The Cosmology Large Angular Scale Surveyor (CLASS) is a polarization-sensitive telescope array located at an altitude of 5,200 m in the Chilean Atacama Desert and designed to measure the polarized Cosmic Microwave Background (CMB) over large angular scales. The CLASS array is currently observing with three telescopes covering four frequency bands: one at 40 GHz (Q); one at 90 GHz (W1); and one dichroic system at 150/220 GHz (HF). During the austral winter of 2022, we upgraded the first 90 GHz telescope (W1) by replacing four of the seven focal plane modules. These new modules contain detector wafers with an updated design, aimed at improving the optical efficiency and detector stability. We present a description of the design changes and measurements of on-sky optical efficiencies derived from observations of Jupiter.
  • Thumbnail Image
    Publication
    CLASS Data Pipeline and Maps for 40 GHz Observations through 2022
    (The Astrophysical Journal, 2023)
    Yunyang Li
    ;
    José R. Eimer
    ;
    Keisuke Osumi
    ;
    John W. Appel
    ;
    Michael K. Brewer
    ;
    Amir Ali
    ;
    Charles L. Bennett
    ;
    Sarah Marie Bruno
    ;
    ;
    David T. Chuss
    ;
    Joseph Cleary
    ;
    Jullianna Denes Couto
    ;
    Sumit Dahal
    ;
    Rahul Datta
    ;
    Kevin L. Denis
    ;
    Rolando DĂ¼nner
    ;
    Francisco Espinoza
    ;
    Thomas Essinger-Hileman
    ;
    Pedro FluxĂ¡ Rojas
    ;
    Kathleen Harrington
    ;
    Jeffrey Iuliano
    ;
    John Karakla
    ;
    Tobias A. Marriage
    ;
    Nathan J. Miller
    ;
    Sasha Novack
    ;
    Carolina NĂºĂ±ez
    ;
    Matthew A. Petroff
    ;
    Rodrigo A. Reeves
    ;
    Karwan Rostem
    ;
    Rui Shi (??)
    ;
    Deniz A. N. Valle
    ;
    Duncan J. Watts
    ;
    Janet L. Weiland
    ;
    Edward J. Wollack
    ;
    Zhilei Xu (???)
    ;
    Lingzhen Zeng .
    The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background over 75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220 GHz. This paper describes the CLASS data pipeline and maps for 40 GHz observations conducted from 2016 August to 2022 May. We demonstrate how well the CLASS survey strategy, with rapid (∼10 Hz) front-end modulation, recovers the large-scale Galactic polarization signal from the ground: the mapping transfer function recovers ∼67% (85%) of EE and BB (VV ) power at ℓ = 20 and ∼35% (47%) at ℓ = 10. We present linear and circular polarization maps over 75% of the sky. Simulations based on the data imply the maps have a white noise level of m110 K arcmin and correlated noise component rising at low-ℓ as ℓ−2.4 . The transfer-function-corrected low-ℓ component is comparable to the white noise at the angular knee frequencies of ℓ ≈ 18 (linear polarization) and ℓ ≈ 12 (circular polarization). Finally, we present simulations of the level at which expected sources of systematic error bias the measurements, finding subpercent bias for the Λ cold dark matter EE power spectra. Bias from E-to-B leakage due to the data reduction pipeline and polarization angle uncertainty approaches the expected level for an r = 0.01 BB power spectrum. Improvements to the instrument calibration and the data pipeline will decrease this bias.
  • Thumbnail Image
    Publication
    CLASS observations of atmospheric cloud polarization at millimeter wavelengths
    (IOP Publishing, 2023) ;
    Li, Yunyang
    ;
    Appel, John
    ;
    Bennett, Charles
    ;
    Chuss, David
    ;
    Cleary, Joseph
    ;
    Couto, Jullianna
    ;
    Dahal, Sumit
    ;
    Datta, Rahul
    ;
    DĂ¼nner, Rolando
    ;
    Eimer, Joseph
    ;
    Essinger-Hileman, Thomas
    ;
    Harrington, Kathleen
    ;
    Iuliano, Jeffrey
    ;
    Marriage, Tobias
    ;
    Petroff, Matthew
    ;
    Reeves, Rodrigo
    ;
    Rostem, Karwan
    ;
    Shi, Rui
    ;
    Valle, Deniz
    ;
    Watts, Duncan
    ;
    Wolff, Oliver
    ;
    Wollack, Edward
    ;
    Xu, Zhilei
    The dynamic atmosphere imposes challenges to ground-based cosmic microwave background observation, especially for measurements on large angular scales. The hydrometeors in the atmosphere, mostly in the form of clouds, scatter the ambient thermal radiation and are known to be the main linearly polarized source in the atmosphere. This scattering-induced polarization is significantly enhanced for ice clouds due to the alignment of ice crystals under gravity, which are also the most common clouds seen at the millimeter-astronomy sites at high altitudes. This work presents a multifrequency study of cloud polarization observed by the Cosmology Large Angular Scale Surveyor experiment on Cerro Toco in the Atacama Desert of northern Chile, from 2016–2022, at the frequency bands centered around 40, 90, 150, and 220 GHz. Using a machine-learning-assisted cloud classifier, we made connections between the transient polarized emission found in all four frequencies with the clouds imaged by monitoring cameras at the observing site. The polarization angles of the cloud events are found to be mostly 90° from the local meridian, which is consistent with the presence of horizontally aligned ice crystals. The 90 and 150 GHz polarization data are consistent with a power law with a spectral index of 3.90 ± 0.06, while an excess/deficit of polarization amplitude is found at 40/220 GHz compared with a Rayleigh scattering spectrum. These results are consistent with Rayleigh-scattering-dominated cloud polarization, with possible effects from supercooled water absorption and/or Mie scattering from a population of large cloud particles that contribute to the 220 GHz polarization.