Research Outputs

Now showing 1 - 4 of 4
  • Thumbnail Image
    Publication
    CLASS angular power spectra and map-component analysis for 40 GHz observations through 2022
    (IOP Publishing, 2024) ;
    Eimer, Joseph
    ;
    Li, Yunyang
    ;
    Brewer, Michael
    ;
    Shi, Rui
    ;
    Ali, Aamir
    ;
    Appel, John
    ;
    Bennett, Charles
    ;
    Bruno, Sarah
    ;
    Chuss, David
    ;
    Cleary, Joseph
    ;
    Dahal, Sumit
    ;
    Datta, Rahul
    ;
    Denes-Couto, Jullianna
    ;
    Denis, Kevin
    ;
    DĂ¼nner, Rolando
    ;
    Essinger-Hileman, Thomas
    ;
    FluxĂ¡, Pedro
    ;
    Hubmayer, Johannes
    ;
    Harrington, Kathleen
    ;
    Iuliano, Jeffrey
    ;
    Karakla, John
    ;
    Marriage, Tobias
    ;
    NĂºĂ±ez, Carolina
    ;
    Parker, Lucas
    ;
    Petroff, Matthew
    ;
    Reeves, Rodrigo
    ;
    Rostem, Karwan
    ;
    Valle, Deniz
    ;
    Watts, Duncan
    ;
    Weiland, Janet
    ;
    Wollack, Edward
    ;
    Xu, Zhilei
    ;
    Zeng, Lingzhen
    Measurement of the largest angular scale (â„“ < 30) features of the cosmic microwave background (CMB) polarization is a powerful way to constrain the optical depth to reionization and search for the signature of inflation through the detection of primordial B-modes. We present an analysis of maps covering 73.6% of the sky made from the 40 GHz channel of the Cosmology Large Angular Scale Surveyor (CLASS) from 2016 August to 2022 May. Taking advantage of the measurement stability enabled by front-end polarization modulation and excellent conditions from the Atacama Desert, we show this channel achieves higher sensitivity than the analogous frequencies from satellite measurements in the range 10 < â„“ < 100. Simulations show the CLASS linear (circular) polarization maps have a white noise level of 125(130) uK arcmin. We measure the Galaxy-masked EE and BB spectra of diffuse synchrotron radiation and compare to space-based measurements at similar frequencies. In combination with external data, we expand measurements of the spatial variations of the synchrotron spectral energy density (SED) to include new sky regions and measure the diffuse SED in the harmonic domain. We place a new upper limit on a background of circular polarization in the range 5 < â„“ < 125 with the first bin showing Dâ„“ < 0.023 uK2CMB at 95% confidence. These results establish a new standard for recovery of the largest-scale CMB polarization from the ground and signal exciting possibilities when the higher sensitivity and higher-frequency CLASS channels are included in the analysis.
  • Thumbnail Image
    Publication
    CLASS Data Pipeline and Maps for 40 GHz Observations through 2022
    (The Astrophysical Journal, 2023)
    Yunyang Li
    ;
    José R. Eimer
    ;
    Keisuke Osumi
    ;
    John W. Appel
    ;
    Michael K. Brewer
    ;
    Amir Ali
    ;
    Charles L. Bennett
    ;
    Sarah Marie Bruno
    ;
    ;
    David T. Chuss
    ;
    Joseph Cleary
    ;
    Jullianna Denes Couto
    ;
    Sumit Dahal
    ;
    Rahul Datta
    ;
    Kevin L. Denis
    ;
    Rolando DĂ¼nner
    ;
    Francisco Espinoza
    ;
    Thomas Essinger-Hileman
    ;
    Pedro FluxĂ¡ Rojas
    ;
    Kathleen Harrington
    ;
    Jeffrey Iuliano
    ;
    John Karakla
    ;
    Tobias A. Marriage
    ;
    Nathan J. Miller
    ;
    Sasha Novack
    ;
    Carolina NĂºĂ±ez
    ;
    Matthew A. Petroff
    ;
    Rodrigo A. Reeves
    ;
    Karwan Rostem
    ;
    Rui Shi (??)
    ;
    Deniz A. N. Valle
    ;
    Duncan J. Watts
    ;
    Janet L. Weiland
    ;
    Edward J. Wollack
    ;
    Zhilei Xu (???)
    ;
    Lingzhen Zeng .
    The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background over 75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220 GHz. This paper describes the CLASS data pipeline and maps for 40 GHz observations conducted from 2016 August to 2022 May. We demonstrate how well the CLASS survey strategy, with rapid (∼10 Hz) front-end modulation, recovers the large-scale Galactic polarization signal from the ground: the mapping transfer function recovers ∼67% (85%) of EE and BB (VV ) power at ℓ = 20 and ∼35% (47%) at ℓ = 10. We present linear and circular polarization maps over 75% of the sky. Simulations based on the data imply the maps have a white noise level of m110 K arcmin and correlated noise component rising at low-ℓ as ℓ−2.4 . The transfer-function-corrected low-ℓ component is comparable to the white noise at the angular knee frequencies of ℓ ≈ 18 (linear polarization) and ℓ ≈ 12 (circular polarization). Finally, we present simulations of the level at which expected sources of systematic error bias the measurements, finding subpercent bias for the Λ cold dark matter EE power spectra. Bias from E-to-B leakage due to the data reduction pipeline and polarization angle uncertainty approaches the expected level for an r = 0.01 BB power spectrum. Improvements to the instrument calibration and the data pipeline will decrease this bias.
  • Thumbnail Image
    Publication
    Four-year Cosmology Large Angular Scale Surveyor (CLASS) observations: On-sky receiver performance at 40, 90, 150, and 220 GHz frequency bands
    (The Astrophysical Journal, 2022)
    Dahal, Sumit
    ;
    Appel, John
    ;
    Datta, Rahul
    ;
    Brewer, Michael
    ;
    Ali, Aamir
    ;
    Bennett, Charles
    ;
    Chan, Manwei
    ;
    Chuss, David
    ;
    Cleary, Joseph
    ;
    Couto, Jullianna
    ;
    Denis, Kevin
    ;
    DĂ¼nner, Rolando
    ;
    Eimer, Joseph
    ;
    Espinoza, Francisco
    ;
    Essinger Hileman, Thomas
    ;
    Golec, Joseph
    ;
    Harrington, Kathleen
    ;
    Helson, Kyle
    ;
    Iuliano, Jeffrey
    ;
    Karakla, John
    ;
    Yunyang, Li
    ;
    Marriage, Tobias
    ;
    McMahon, Jeffrey
    ;
    Miller, Nathan
    ;
    Novack, Sasha
    ;
    NĂºĂ±ez, Carolina
    ;
    Osumi, Keisuke
    ;
    Padilla, Ivan
    ;
    Palma, Gonzalo
    ;
    Parker, Lucas
    ;
    Petroff, Matthew
    ;
    Reeves, Rodrigo
    ;
    Rhoades, Gary
    ;
    Rostem, Karwan
    ;
    Valle, Deniz
    ;
    Watts, Duncan
    ;
    Weiland, Janet
    ;
    Wollack, Edward
    ;
    Zhilei, Xu
    ;
    The Cosmology Large Angular Scale Surveyor (CLASS) observes the polarized cosmic microwave background (CMB) over the angular scales of 1° ≲ θ ≤ 90° with the aim of characterizing primordial gravitational waves and cosmic reionization. We report on the on-sky performance of the CLASS Q-band (40 GHz), W-band (90 GHz), and dichroic G-band (150/220 GHz) receivers that have been operational at the CLASS site in the Atacama desert since 2016 June, 2018 May, and 2019 September, respectively. We show that the noise-equivalent power measured by the detectors matches the expected noise model based on on-sky optical loading and lab-measured detector parameters. Using Moon, Venus, and Jupiter observations, we obtain power to antenna temperature calibrations and optical efficiencies for the telescopes. From the CMB survey data, we compute instantaneous array noise-equivalent-temperature sensitivities of 22, 19, 23, and 71 $\mu {{\rm{K}}}_{\mathrm{cmb}}\sqrt{{\rm{s}}}$ for the 40, 90, 150, and 220 GHz frequency bands, respectively. These noise temperatures refer to white noise amplitudes, which contribute to sky maps at all angular scales. Future papers will assess additional noise sources impacting larger angular scales.
  • Thumbnail Image
    Publication
    Calibration of Transition-edge Sensor (TES) bolometer arrays with application to CLASS
    (IOP Publishing, 2022) ;
    Appel, John
    ;
    Bennett, Charles L.
    ;
    Brewer, Michael
    ;
    Chan, Manwei
    ;
    Chuss, David
    ;
    Cleary, Joseph
    ;
    Couto, Jullianna
    ;
    Dahal, Sumit
    ;
    Datta, Rahul
    ;
    Denis, Kevin
    ;
    Eimer, Joseph
    ;
    Essinger-Hileman, Thomas
    ;
    Harrington, Kathleen
    ;
    Iuliano, Jeffrey
    ;
    Li, Yunyang
    ;
    Marriage, Tobias
    ;
    NĂºĂ±ez, Carolina
    ;
    Osumi, Keisuke
    ;
    Padilla, Ivan
    ;
    Petroff, Matthew
    ;
    Rostem, Karwan
    ;
    Valle, Deniz
    ;
    Watts, Duncan
    ;
    Weiland, Janet
    ;
    Wollack, Edward
    ;
    Xu, Zhilei
    The current and future cosmic microwave background (CMB) experiments fielding kilopixel arrays of transition-edge sensor (TES) bolometers require accurate and robust gain calibration methods. We simplify and refactor the standard TES model to directly relate the detector responsivity calibration and optical time constant to the measured TES current I and the applied bias current Ib. The calibration method developed for the Cosmology Large Angular Scale Surveyor (CLASS) TES bolometer arrays relies on current versus voltage (I–V) measurements acquired daily prior to CMB observations. By binning Q-band (40 GHz) I–V measurements by optical loading, we find that the gain calibration median standard error within a bin is 0.3%. We test the accuracy of this I–Vbin detector calibration method by using the Moon as a photometric standard. The ratio of measured Moon amplitudes between the detector pairs sharing the same feedhorn indicates a TES calibration error of 0.5%. We also find that, for the CLASS Q-band TES array, calibrating the response of individual detectors based solely on the applied TES bias current accurately corrects TES gain variations across time but introduces a bias in the TES calibration from data counts to power units. Since the TES current bias value is set and recorded before every observation, this calibration method can always be applied to the raw TES data and is not subject to I–V data quality or processing errors.