Research Outputs

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    Three-dimensional hypergravity theories and semigroup expansion method
    (Springer Nature, 2023) ; ;
    Caroca, Ricardo
    ;
    Matulich, Javier
    ;
    Tempo, David
    In this work, we apply the semigroup expansion method of Lie algebras to construct novel and known three-dimensional hyper-gravity theories. We show that the expansion procedure considered here yields a consistent way of coupling different three-dimensional Chern-Simons gravity theories with massless spin- 5/2 gauge fields. First, by expanding the osp (1|4) superalgebra with a particular semigroup a generalized hyper-Poincaré algebra is found. Interestingly, the hyper-Poincaré and hyper-Maxwell algebras appear as subalgebras of this generalized hyper-symmetry algebra. Then, we show that the generalized hyper-Poincaré CS gravity action can be written as a sum of diverse hyper-gravity CS Lagrangians. We extend our study to a generalized hyper-AdS gravity theory by considering a different semigroup. Both generalized hyperalgebras are then found to be related through an Inönü-Wigner contraction which can be seen as a generalization of the existing vanishing cosmological constant limit between the hyper-AdS and hyper-Poincaré gravity theories.
  • Publication
    On the supersymmetric extension of asymptotic symmetries in three spacetime dimensions
    (European Physical Journal C, 2020) ; ;
    Fierro-Mondaca, Octavio
    ;
    Caroca, Ricardo
    In this work we obtain known and new supersymmetric extensions of diverse asymptotic symmetries defined in three spacetime dimensions by considering the semigroup expansion method. The super-BMS3, the superconformal algebra and new infinite-dimensional superalgebras are obtained by expanding the super-Virasoro algebra. The new superalgebras obtained are supersymmetric extensions of the asymptotic algebras of the Maxwell and the so(2, 2)⊕ so(2, 1) gravity theories. We extend our results to the N = 2 and N = 4 cases and find that R-symmetry generators are required. We also show that the new infinite-dimensional structures are related through a flat limit → ∞.