Options
Dr. Concha-Aguilera, Patrick
Nombre de publicación
Dr. Concha-Aguilera, Patrick
Nombre completo
Concha Aguilera, Patrick Keissy
Facultad
Email
patrick.concha@ucsc.cl
ORCID
25 results
Research Outputs
Now showing 1 - 10 of 25
- PublicationThree-dimensional non-relativistic supergravity and torsion(European Physical Journal C, 2022)
; ; Ravera, LucreziaIn this paper we present a torsional non-relativi-stic Chern–Simons (super)gravity theory in three spacetime dimensions. We start by developing the non-relativistic limit of the purely bosonic relativistic teleparallel Chern–Simons formulation of gravity. On-shell the latter yields a non-Riemannian setup with non-vanishing torsion, which, at non-relativistic level, translates into a non-vanishing spatial torsion sourced by the cosmological constant. Then we consider the three-dimensional relativistic N= 2 teleparallel Chern–Simons supergravity theory and obtain its non-relativistic counterpart by exploiting a Lie algebra expansion method. The non-relativistic supergravity theory is characterized, on-shell, by a non-vanishing spatial super-torsion, again sourced by the cosmological constant. - PublicationResonant superalgebras and N=1 supergravity theories in three spacetime dimensions(Physics Letters B, 2020)
; ; Durka, RemigiuszWe explore N=1supersymmetric extensions of algebras going beyond the Poincaré and AdS ones in three spacetime dimensions. Besides reproducing two known examples, we present new superalgebras, which all correspond to supersymmetric extensions with one fermionic charge Qαconcerning the so-called resonant algebras being characterized by the presence of an additional bosonic generator Za. We point out particular requirements that superalgebras have to satisfy to be successfully incorporated within valid supergravity actions. The presented algebraic and Lagrangian framework helps us better understand the relations between the various supergravity and supersymmetric Chern-Simons actions invariant under diverse resonant - PublicationNon-relativistic limit of the Mielke–Baekler gravity theory(Springer Nature, 2024)
; ; Merino, NelsonIn this paper, we present a generalized nonrelativistic Chern–Simons gravity model in three spacetime dimensions. We first study the non-relativistic limit of the Mielke–Baekler gravity through a contraction process. The resulting non-relativistic theory contains a source for the spatial component of the torsion and the curvature measured in terms of two parameters, denoted by p and q. We then extend our results by defining a Newtonian version of the Mielke–Baekler gravity theory, based on a Newtonian like algebra which is obtained from the non-relativistic limit of an enhanced and enlarged relativistic algebra. Remarkably, in both cases, different known non-relativistic and Newtonian gravity theories can be derived by fixing the (p, q) parameters. In particular, torsionless models are recovered for q = 0. - PublicationNon-relativistic and ultra-relativistic expansions of three-dimensional spin-3 gravity theories(Springer Nature, 2022)
; ; Henríquez-Baez, CarlaIn this paper, we present novel and known non-relativistic and ultra-relativistic spin-3 algebras, by considering the Lie algebra expansion method. We start by applying the expansion procedure using different semigroups to the spin-3 extension of the AdS algebra, leading to spin-3 extensions of known non-relativistic and ultra-relativistic algebras. We then generalize the procedure considering an infinite-dimensional semigroup, which allows to obtain a spin-3 extension of two new infinite families of the Newton-Hooke type and AdS Carroll type. We also present the construction of the gravity theories based on the aforementioned algebras. In particular, the expansion method based on semigroups also allows to derive the (non-degenerate) invariant bilinear forms, ensuring the proper construction of the Chern-Simons gravity actions. Interestingly, in the vanishing cosmological constant limit we recover the spin-3 extensions of the infinite-dimensional Galilean and infinite-dimensional Carroll gravity theories. - PublicationThree-dimensional teleparallel Chern-Simons supergravity theory(Springer Nature, 2021)
; ; ;Caroca-Lisboa, RicardoPeñafiel, DiegoIn this work we present a gauge-invariant threedimensional teleparallel supergravity theory using the ChernSimons formalism. The present construction is based on a supersymmetric extension of a particular deformation of the Poincaré algebra. At the bosonic level the theory describes a non-Riemannian geometry with a non-vanishing torsion. In presence of supersymmetry, the teleparallel supergravity theory is characterized by a non-vanishing super-torsion in which the cosmological constant can be seen as a source for the torsion. We show that the teleparallel supergravity theory presented here reproduces the Poincaré supergravity in the vanishing cosmological limit. The extension of our results to N = p + q supersymmetries is also explored. - PublicationOn stabilization of Maxwell-BMS algebraIn this work we present different infinite dimensional algebras which appear as deformations of the asymptotic symmetry of the three-dimensional Chern-Simons gravity for the Maxwell algebra. We study rigidity and stability of the infinite dimensional enhancement of the Maxwell algebra. In particular, we show that three copies of the Witt algebra and the bms3⊕witt algebra are obtained by deforming its ideal part. New family of infinite dimensional algebras are obtained by considering deformations of the other commutators which we have denoted as M (a, b; c, d) and M¯(α¯,β¯;ν¯). Interestingly, for the specific values a = c = d = 0,b = − 1/2 the obtained algebra M (0,− 1/2;0,0) corresponds to the twisted Schrödinger-Virasoro algebra. The central extensions of our results are also explored. The physical implications and relevance of the deformed algebras introduced here are discussed along the work.
- PublicationNon-relativistic gravity theories in four spacetime dimensions(Journal of High Energy Physics, 2023)
; ; Rubio, GustavoIn this work we present a non-relativistic gravity theory defined in four spacetime dimensions using the MacDowell-Mansouri geometrical formulation. We obtain a Newtonian gravity action which is constructed from the curvature of a Newton-Hooke version of the so-called Newtonian algebra. We show that the non-relativistic gravity theory presented here contains the Poisson equation in presence of a cosmological constant. Moreover we make contact with the Modified Newtonian Dynamics (MOND) approach for gravity by considering a particular ansatz for a given gauge field. We extend our results to a generalized non-relativistic MacDowell-Mansouri gravity theory by considering a generalized Newton-Hooke algebra. - PublicationExtended kinematical 3D gravity theories(Springer Nature, 2024)
; ; ;Pino, DanielRavera, LucreziaIn this work, we classify all extended and generalized kinematical Lie algebras that can be obtained by expanding the so (2, 2) algebra. We show that the Lie algebra expansion method based on semigroups reproduces not only the original kinematical algebras but also a family of non- and ultra-relativistic algebras. Remarkably, the extended kinematical algebras obtained as sequential expansions of the AdS algebra are characterized by a non-degenerate bilinear invariant form, ensuring the construction of a well-defned Chern-Simons gravity action in three spacetime dimensions. Contrary to the contraction process, the degeneracy of the non-Lorentzian theories is avoided without extending the relativistic algebra but considering a bigger semigroup. Using the properties of the expansion procedure, we show that our construction also applies at the level of the Chern-Simons action. - PublicationExact flavored black p-branes and self-gravitating instantons from toroidal black holes with Skyrme hair(Purpose-Led Publishing, 2023)
; ; ;Henríquez-Baez, CarlaVera, AldoIn this paper, using the maximal embedding of SU(2) into SU(N) in the Euler angles parametrization, we construct a novel family of exact solutions of the Einstein SU(N)-Skyrme model. First, we present a hairy toroidal black hole in D ¼ 4 dimensions. This solution is asymptotically locally anti–de Sitter and is characterized by discrete hair parameters. Then, we perform a dimensional extension of the black hole to obtain black p-branes as solutions of the Einstein SU(N)-nonlinear sigma model in D ≥ 5 dimensions. These are homogeneous and topologically protected. Finally we show that, through a Wick rotation of the toroidal black hole, one can construct an exact self-gravitating instanton. The role that the flavor number N plays in the geometry and thermodynamics of these configurations is also discussed. - PublicationThree-dimensional hypergravity theories and semigroup expansion method(Springer Nature, 2023)
; ; ;Caroca, Ricardo ;Matulich, JavierTempo, DavidIn this work, we apply the semigroup expansion method of Lie algebras to construct novel and known three-dimensional hyper-gravity theories. We show that the expansion procedure considered here yields a consistent way of coupling different three-dimensional Chern-Simons gravity theories with massless spin- 5/2 gauge fields. First, by expanding the osp (1|4) superalgebra with a particular semigroup a generalized hyper-Poincaré algebra is found. Interestingly, the hyper-Poincaré and hyper-Maxwell algebras appear as subalgebras of this generalized hyper-symmetry algebra. Then, we show that the generalized hyper-Poincaré CS gravity action can be written as a sum of diverse hyper-gravity CS Lagrangians. We extend our study to a generalized hyper-AdS gravity theory by considering a different semigroup. Both generalized hyperalgebras are then found to be related through an Inönü-Wigner contraction which can be seen as a generalization of the existing vanishing cosmological constant limit between the hyper-AdS and hyper-Poincaré gravity theories.
- «
- 1 (current)
- 2
- 3
- »