Research Outputs

Now showing 1 - 10 of 36
  • Thumbnail Image
    Publication
    The influence of glacial melt and retreat on the nutritional condition of the bivalve Nuculana inaequisculpta (Protobranchia: Nuculanidae) in the West Antarctic Peninsula
    (PLOS, 2020)
    Bascur Bascur, Miguel Ángel
    ;
    Muñoz Ramírez, Carlos
    ;
    Román González, Alejandro
    ;
    Sheen, Katy
    ;
    Barnes, David K. A.
    ;
    Sands, Chester J.
    ;
    ;
    Due to climate change, numerous ice bodies have been lost in the West Antarctic Peninsula (WAP). As a consequence, deglaciation is expected to impact the marine environment and its biota at physiological and ecosystem levels. Nuculana inaequisculpta is a marine bivalve widely distributed around Antarctica that plays an important role for ecosystem functioning. Considering that N. inaequisculpta inhabits coastal areas under effect of glacial melt and retreat, impacts on its nutritional condition are expected due to alterations on its physiology and food availability. To test this hypothesis, biochemical composition (lipids, proteins, and fatty acids) and energy content were measured in individuals of N. inaequisculpta collected in a fjord at different distances to the retreating glacier in the WAP. Oceanographic parameters of the top and bottom-water layers (temperature, salinity, dissolved oxygen, and chlorophyll-a) were measured to investigate how the environment changes along the fjord. Results showed that surface oceanographic parameters displayed a lower temperature and dissolved oxygen, but a higher salinity and chlorophyll-a content at nearest compared to farthest sites to the glacier. In contrast, a lower temperature and chlorophyll-a, and a higher salinity and dissolved oxygen was measured in the bottom-water layer toward the glacier. N. inaequisculpta had a higher amount of lipids (17.42 ± 3.24 vs. 12.16 ± 3.46%), protein (24.34 ± 6.12 vs. 21.05 ± 2.46%) and energy content (50.57 ± 6.97 J vs. 39.14 ± 5.80 J) in the farthest compared to the nearest site to the glacier. No differences were found in total fatty acids among all sites. It seems likely that lower individual fitness related to proximity to the glacier would not be related to nutritional quality of sediment food, but rather to food quantity.
  • Publication
    Greater functional similarity in mobile compared to sessile assemblages colonizing artificial coastal habitats
    (Marine Pollution Bulletin, 2021)
    Nashira Figueroa, Naily
    ;
    ;
    Viard, Frédérique
    ;
    Leclerc, Jean-Charles
    Among anthropogenic habitats built in the marine environment, floating and non-floating structures can be colonized by distinct assemblages. However, there is little knowledge whether these differences are also reflected in the functional structure. This study compared the functional diversity of sessile and mobile invertebrate assemblages that settle over three months on floating vs. non-floating artificial habitats, in two Chilean ports. Using morphological, trophic, behavioral, and life history traits, we found differences between mobile and sessile as-semblages regarding the effect of the type of habitat on the functional diversity. Compared to sessile assemblages, a greater functional similarity was observed for mobile assemblages, which suggests that their dispersal capacity enables them to balance the reduced connectivity between settlement structures. No traits, prevailing or selected in one or the other habitat type, was however clearly identified; a result warranting for further studies focusing on more advanced stages of community development.
  • Publication
    Experimental and survey-based evidences for effective biotic resistance by predators in ports
    (Biological Invasions, 2020)
    Leclerc, Jean-Charles
    ;
    Viard, Frédérique
    ;
    Of the suite of species interactions involved in biotic resistance to species invasions, predation can have complex outcomes according to the theoretical and empirical framework of community ecology. In this study, we aimed to determine the likelihood of consumptive biotic resistance within fouling communities in four ports of central Chile. Notably, we examined the influence of micro- (> 1–2 mm, < 1–2 cm) and macro- (> 1–2 cm) predators, with a particular focus on their effects on non-indigenous species (NIS). Experimental and observational approaches were combined. An exclusion experiment was carried out over 4 months to examine predator effect on the early establishment of new assemblages on settlement panels. Later successional stages upon panels were examined over a total of 26 months and supported by rapid assessment surveys in the surrounding habitats. Community structure was significantly influenced by the exclusion treatments. Macropredators reduced the fouling biomass and abundance, although conflicting patterns emerged from the exclusion of both categories of predators. Altogether, predators reduced the abundance of most NIS and cryptogenic species, some of them being only observed when the two categories of predators were excluded—a pattern generally sustained over the long-term dynamics in community development. Our results show an effective consumptive biotic resistance, furthermore possibly dependent on predator size. Further work is however needed to determine the influence of the functional diversity of natural enemies on the efficiency of biotic resistance and its interplay with other biotic interactions (competition or mutualism). A comprehensive understanding of these processes should in turn help defining management strategies in a context of habitat modification and species loss.
  • Thumbnail Image
    Publication
    Genetic population structure of lane snapper Lutjanus synagris (Linnaeus, 1758) in Western Atlantic: Implications for conservation
    (MDPI, 2024) ;
    Núñez-Vallecillo, Mayra
    ;
    Vera-Escalona, Iván
    ;
    Górski, Konrad
    ;
    Rivera, Antonella
    Genetic structure and connectivity information can be used to identify biological corridors and prioritize the conservation of areas that help maintain ecosystem integrity. Some marine fish, especially those of commercial interest, have been proposed as suitable indicators to identify potential marine biological corridors due to their high mobility among habitats and socioeconomic importance. In this study, we assessed the genetic structure of lane snapper populations in the Honduran Caribbean to evaluate connectivity and identify potential environmental barriers. Furthermore, we evaluated the genetic characteristics of the lane snapper on a larger spatial scale, including populations across the rest of its distribution range in the western Atlantic, using mtDNA and nuDNA markers. Our results demonstrate a significant genetic diversity of lane snappers in the Honduran Caribbean. Furthermore, despite their high dispersal potential, we observed genetic structuring in lane snapper populations on a larger spatial scale, resulting in the formation of two distinct groups throughout their distribution range: group 1 from Florida, the Gulf of Mexico, Honduras, and Colombia and group 2 from Puerto Rico and Brazil. This genetic differentiation can be attributed to oceanographic barriers such as river plumes and marine currents. These findings have the potential to significantly impact marine conservation and management efforts in the region, both at local and regional scales. It is anticipated that they will not only inform but also elicit a response, driving further action towards effective conservation measures. At a local scale, we recommend that conservation efforts focus on protecting critical habitats. At a regional scale, lane snappers should be included in the management plans of existing marine protected areas necessary to ensure the long-term sustainability of the species and the marine ecosystems in which it resides.
  • Thumbnail Image
    Publication
    Structural attributes and macrofaunal assemblages associated with rose gorgonian gardens (Leptogorgia sp. nov.) in Central Chile: Opening the door for conservation actions
    (Springer Nature, 2024) ; ;
    Camps-Castellà, Judith
    ;
    Prado, Patricia
    ;
    Tena-Medialdea, José
    Gorgonians (like corals) are important habitat-forming organisms that support a diversity of macrofauna. This study explored structural attributes of gorgonian gardens formed by rose gorgonians (Leptogorgia sp. nov.) and associated macrofaunal assemblages in Caleta Pichicuy (Central Chile). Hierarchical sampling was conducted at 20 m depth (maximum colony abundances) in order to assess spatial variability in abundance and colony attributes at two spatial scales (among sites and rocky walls). The abundance and composition of the associated vagile and sessile macrofauna were also examined using univariant (Taxa richness and Shannon index (H’e)) and multivariant approaches and were compared with adjacent bare rocky habitats. Our results showed a high abundance of gorgonians (ca. 28.9–36.5 colonies m−2) compared to other gorgonian gardens in the world. For structural attributes, our results showed smaller colonies with thicker holdfasts in more exposed sites, suggesting the influence of hydrodynamic forces on the colony morphology. Taxa richness and H’e of vagile fauna showed threefold and twofold, respectively, higher values in gorgonian gardens compared to bare walls, but no differences were observed for sessile fauna. In addition, PCoA and PERMANOVA evidenced a distinctive assemblages’ composition between habitats for both vagile and sessile fauna. Correlation analyzes and dbRDA showed, however, little association between structural attributes and associated faunal assemblages (R2 = 0.06, and ca. 3–9.4% of the total variation explained, respectively). Our results constitute the first assessment of structural habitat complexity and accompanying fauna in these gorgonian gardens and establish the baseline for understanding possible future changes associated to human activities.
  • Thumbnail Image
    Publication
    Predator control of marine communities increases with temperature across 115 degrees of latitude
    (Science, 2022) ;
    Gail V Ashton
    ;
    Amy L Freestone
    ;
    J Emmett Duffy
    ;
    Mark E Torchin
    ;
    Brent J Sewall
    ;
    Brianna Tracy
    ;
    Mariano Albano
    ;
    Andrew H Altieri
    ;
    Luciana Altvater
    ;
    Rolando Bastida-Zavala
    ;
    Alejandro Bortolus11
    ;
    Viviana Bravo
    ;
    Norah Brown
    ;
    Alejandro H Buschmann
    ;
    Edward Buskey
    ;
    Rosita Calderón Barrera
    ;
    Brian Cheng
    ;
    Rachel Collin
    ;
    Ricardo Coutinho
    ;
    Luis De Gracia
    ;
    Gustavo M Dias
    ;
    Claudio DiBacco
    ;
    Augusto A V Flores
    ;
    Maria Angélica Haddad
    ;
    Zvi Hoffman
    ;
    Bruno Ibañez Erquiaga
    ;
    Dean Janiak
    ;
    Analí Jiménez Campeán
    ;
    Inti Keith
    ;
    Jean-Charles Leclerc
    ;
    Orlando Pedro Lecompte-Pérez
    ;
    Guilherme Ortigara Longo
    ;
    Helena Matthews-Cascon
    ;
    Cynthia H McKenzie
    ;
    Jessica Miller
    ;
    Martín Munizaga
    ;
    Lais P D Naval-Xavier
    ;
    Sergio A Navarrete
    ;
    Carlos Otálora
    ;
    Lilian A Palomino-Alvarez
    ;
    Maria Gabriela Palomo
    ;
    Chris Patrick
    ;
    Cormack Pegau
    ;
    Sandra V Pereda
    ;
    Rosana M Rocha
    ;
    Carlos Rumbold
    ;
    Carlos Sánchez
    ;
    Adolfo Sanjuan-Muñoz
    ;
    Carmen Schlöder
    ;
    Evangelina Schwindt
    ;
    Janina Seemann
    ;
    Alan Shanks
    ;
    Nuno Simoes
    ;
    Luis Skinner
    ;
    Nancy Yolimar Suárez-Mozo
    ;
    Martin Thiel
    ;
    Nelson Valdivia
    ;
    Ximena Velez-Zuazo
    ;
    Edson A Vieira
    ;
    Bruno Vildoso
    ;
    Ingo S Wehrtmann
    ;
    Matt Whalen
    ;
    Lynn Wilbur
    ;
    Gregory M Ruiz
    Early naturalists suggested that predation intensity increases toward the tropics, affecting fundamental ecological and evolutionary processes by latitude, but empirical support is still limited. Several studies have measured consumption rates across latitude at large scales, with variable results. Moreover, how predation affects prey community composition at such geographic scales remains unknown. Using standardized experiments that spanned 115° of latitude, at 36 nearshore sites along both coasts of the Americas, we found that marine predators have both higher consumption rates and consistently stronger impacts on biomass and species composition of marine invertebrate communities in warmer tropical waters, likely owing to fish predators. Our results provide robust support for a temperature-dependent gradient in interaction strength and have potential implications for how marine ecosystems will respond to ocean warming.
  • Thumbnail Image
    Publication
    Morfometría y diagnóstico molecular de larvas de Anisakis (Nematoda: Ascaridida) en Merluccius gayi (Chordata: Gadiformes) y Dosidicus gigas (Mollusca: Teuthida) en la región del Biobío, Chile
    (Universidad de Valparaiso, 2024)
    Lugo-Pérez, Luisana
    ;
    Vera-Escalona, Iván
    ;
    ; ;
    Las especies del género Anisakis (Nematoda: Anisakidae) son parásitos marinos con ciclo de vida indirecto. Los crustáceos planctónicos actúan como primeros hospedadores intermediarios, mientras que peces y cefalópodos intervienen como segundos hospedadores intermediarios o paraténicos, finalmente el ciclo se cierra en los cetáceos, mamíferos marinos que son los principales hospedadores definitivos del género. En el ciclo de vida, las larvas de Anisakis pueden ser ingeridas por el hombre interviniendo como huésped accidental, lo que puede ocasionar anisakiasis, una zoonosis adquirida a través del consumo de peces y cefalópodos crudos o marinados. Estos nemátodos tienen una distribución cosmopolita, sin embargo, su diversidad ha sido escasamente estudiada en el hemisferio Sur. Por tanto, se evaluó la diversidad de las larvas de Anisakis spp., presentes en dos especies de hospederos de Chile, combinando el análisis morfométrico y genético. Para ello, se recolectaron larvas de Anisakis spp. en la cavidad abdominal de la merluza Merluccius gayi y el calamar Dosidicus gigas, procedentes de terminales pesqueros de la región del Biobío, Chile. La caracterización morfométrica de las larvas de Anisakis spp., consistió en la medición de la longitud del esófago, ventrículo esofágico, cola, longitud total y ancho máximo del cuerpo. Para los análisis genéticos se usó la región molecular nuclear ITS (ITS1-ITS2) y mitocondrial COX2. Los resultados morfométricos revelaron que las larvas extraídas de D. gigas son significativamente de mayor longitud que las recolectadas en M. gayi, sugiriendo una alta variabilidad fenotípica hospedador-dependiente. Los análisis moleculares y filogenéticos determinaron la presencia de Anisakis pegreffii en ambos hospedadores, sin embargo, demostraron una baja diferenciación genética y diversidad nucleotídica entre las secuencias, indicando una escasa variabilidad genética para el conjunto de datos. Este trabajo constituye el primer registro molecular de A. pegreffii en hospedadores intermediario o paraténicos de la costa de Chile.
  • Publication
    The impact of glacial meltwater on the integrated bioenergetic condition of two key antartic benthic polychaetes (Maldane sarsi antarctica, Notomastus latericeus)
    (Elsevier, 2024) ; ;
    Cataldo-Mendez, Camila
    In coastal Antarctic environments, glacial meltwater changes the nutrients and physicochemical parameters in the water column. Consequently, top-down cascading effects are triggered throughout the food web, which can affect the bioenergetic condition of benthic invertebrates and their coupling processes between energy levels and flows throughout the marine food web. In this study, two benthic polychaetes (Maldane sarsi antarctica and Notomastus latericeus), exposed to the impact of glacial melting over a broad time scale, were used to evaluate the effect of glacial meltwater on their bioenergetic condition through the integrated analysis of: i) their biochemical composition; ii) fatty acid profiles and iii) total energy contents. The findings indicate that glacial meltwater has a direct effect on the bioenergetic condition of polychaetes. In areas where glacial meltwater has a significant impact, N. latericeus showed higher levels of proteins and glucose, but lower levels of lipids. On the other hand, M. sarsi antarctica exhibited decreased protein content with increasing glacial meltwater impact. M. sarsi antarctica presented varying levels of lipids across different sites, with the highest concentrations observed in areas with moderate impact. Both species showed a reduction in fatty acids with increasing glacial meltwater impact. Additionally, M. sarsi antarctica individuals from highly impacted areas had lower energy levels than those from less impacted areas, while N. latericeus had higher energy levels in the most impacted site. This information enables the development of a framework for assessing the impact of climate change using glacial meltwater and the integrated bioenergetics of key benthic polychaeta as a proxy. Therefore, identifying how glacial meltwater affects their bioenergetic condition helps us understand how climate change could affect trophic interactions, structure, and energy flows in the Antarctic marine food web.
  • Thumbnail Image
    Publication
    After a catastrophe, a little bit of sex is better than nothing: Genetic consequences of a major earthquake on asexual and sexual populations
    (Evolutionary Aplications, 2020) ;
    Becheler, Ronan
    ;
    Guillemin, Marie
    ;
    Stoeckel, Solenn
    ;
    Mauger, Stéphane
    ;
    Saunier, Alice
    ;
    Destombe, Christophe
    ;
    Valero, Myriam
    Catastrophic events can have profound effects on the demography of a population and consequently on genetic diversity. The dynamics of postcatastrophic recovery and the role of sexual versus asexual reproduction in buffering the effects of massive perturbations remain poorly understood, in part because the opportunity to document genetic diversity before and after such events is rare. Six natural (purely sexual) and seven cultivated (mainly clonal due to farming practices) populations of the red alga Agarophyton chilense were surveyed along the Chilean coast before, in the days after and 2 years after the 8.8 magnitude earthquake in 2010. The genetic diversity of sexual populations appeared sensitive to this massive perturbation, notably through the loss of rare alleles immediately after the earthquake. By 2012, the levels of diversity returned to those observed before the catastrophe, probably due to migration. In contrast, enhanced rates of clonality in cultivated populations conferred a surprising ability to buffer the instantaneous loss of diversity. After the earthquake, farmers increased the already high rate of clonality to maintain the few surviving beds, but most of them collapsed rapidly. Contrasting fates between sexual and clonal populations suggest that betting on strict clonality to sustain production is risky, probably because this extreme strategy hampered adaptation to the brutal environmental perturbation induced by the catastrophe.
  • Thumbnail Image
    Publication
    Habitat type drives the distribution of non-indigenous species in fouling communities regardless of associated maritime traffic
    (Biodiversity Research, 2020)
    Leclerc, Jean-Charles
    ;
    Viard, Frédérique
    ;
    ; ;
    Neira Hinojosa, José
    ;
    Pérez Araneda, Karla
    ;
    Silva, Francisco
    ;
    Biological invasions and changes in land and sea use are among the five major causes of global biodiversity decline. Shipping and ocean sprawl (multiplication of artificial structures at the expense of natural habitats) are considered as the major forces responsible for marine invasions and biotic homogenization. And yet, there is little evidence of their interplay at multiple spatial scales. Here, we aimed to examine this interaction and the extent to which the type of artificial habitat alters the distribution of native and non‐indigenous biodiversity. Location: Southeast Pacific—Central Chilean coastline.