Options
Dr. Urzúa-Osorio, Ángel
Nombre de publicación
Dr. Urzúa-Osorio, Ángel
Nombre completo
Urzúa Osorio, Ángel Gabriel
Facultad
Email
aurzua@ucsc.cl
ORCID
8 results
Research Outputs
Now showing 1 - 8 of 8
- PublicationSpatio-temporal changes in the biochemical parameters of the fishery resource Concholepas concholepas (Gastropoda: Muricidae) in the Southeastern Pacific Ocean(Elsevier, 2021)
; ;Lazo-Andrade, Jorge ;Guzmán-Rivas, Fabián ;Espinoza, Pepe ;García-Huidobro, M. ;Aldana, MarcelaPulgar, JoséThe fishery resource Concholepas concholepas is a key species in the benthic marine ecosystems of the Southeastern Pacific Ocean. In the present study, the spatio-temporal changes in the biochemical parameters were evaluated for adult individuals of C. concholepas. They were sampled in summer and winter under upwelling and Non-upwelling conditions in two Management and Exploitation Areas for Benthic Resources of Valparaíso, Chile. The results indicated that the variation in the biochemical parameters is explained to a greater extent by the season. For example, in both upwelling and Nonupwelling conditions, we found a higher content of total lipids, proteins, glucose, and energy in winter than summer. Temporal variations can be explained by the reproductive process after summer season, in which the egg spawning require a greater energy reserves to be perform. Nonetheless, differences in the nutritional status of preys along seasons of the year, can also influence on these results. In fact, these variations in the biochemical parameters of C. concholepas may be indicative of an adaptive seasonal physiological response to the environment for maintaining an optimal energy budget year-round. Altogether, this knowledge will contribute to the Management and Exploitation Areas for Benthic Resources, improving regulatory measures during the annual period of captures and landings of C. concholepas, favoring a more sustainable fishery in the Southeastern Pacific Ocean within an ecosystem approach. - PublicationSeasonal dynamics of biochemical composition and fatty acids of swordfish (Xiphias gladius) in the Southeast Pacific Ocean off the coast of Chile(Elsevier, 2021)
; ;Lazo-Andrade, Jorge ;Guzmán-Rivas, Fabián ;Barría, Patricio ;Ortega, JuanMora, SergioIn the Southeast Pacific Ocean, Xiphias gladius migrates through the Chilean coastal zone for feeding. Here, it forages for different prey items from autumn to spring, acquiring a great variety of energy and nutritional reserves. We evaluated seasonal variations in the biochemical reserves (i.e., contents of lipids, proteins, and glucose), total energy content and fatty acid profile of specimens captured during the austral autumn, winter, and spring. Our results show that higher amounts of lipids were found in the winter and spring, while protein and glucose were higher in the autumn. Thus, the energy content showed significant differences, with higher levels in winter and spring. Furthermore, the fatty acid profile was more diverse in the spring than the autumn and winter and was characterized by higher amounts of polyunsaturated fatty acids. These findings suggest that temporal changes in the biochemical reserves, total energy content and fatty acid profile support the idea of a “trophic migration” (i.e., the feeding period) established by the dynamics of fishery fleets. The high amounts of lipids and diverse fatty acid profile found in the spring could indicate the end of the trophic migration during this season. Thus, X. gladius may reach an optimum nutritional condition in the spring and make energetic adjustments to carry out its reproductive migration during the austral summer. Therefore, this species seems to meet the high energy demands of the reproductive season by foraging for a wide range of prey items from autumn to spring and storing an increased amount of lipids at the end of the feeding period. Overall, our data provides crucial baseline knowledge for future research on the ecophysiology of X. gladius, as well as for the management and conservation of this fishery resource under an ecosystem approach. - PublicationThe cascade of effects caused by emersion during early ontogeny in porcelain crabs of the Southeast Pacific coast: Biochemical responses of offspringPetrolisthes crabs inhabit a wide range of coastal environments, from the upper intertidal to the subtidal, experiencing regular changes in pH, salinity, and temperature. Hence, such subtidal and intertidal invertebrates are likely to show physiological and biochemical adaptive responses in order to successfully develop during early ontogenetic stages and thus reach reproduction. We herein evaluated the biochemical responses to contrasting environmental conditions of the early ontogenetic stages of two coastal crabs from the Southeast Pacific coast: Petrolisthes laevigatus and Allopetrolisthes punctatus. For this purpose, stage I embryos of both species were subjected to two treatments: (1) emersion (i.e., a daily 3 h aerial exposure until the zoeas hatched) and (2) immersion (i.e., uninterrupted underwater submersion until the zoeas hatched); the total contents of glucose, proteins, lipids, and fatty acids of the organisms were measured in stage I embryos and recently hatched zoeas in order to assess the biochemical constitution of the two species. Both species showed changes in their energetic reserves when treatments within species were compared. Our results found that A. punctatus was negatively affected by stressful periods of emersion, while P. laevigatus showed the opposite tendency and was affected by periods of immersion. The sensitivity of the response and the contrasting outcomes for these two crabs underpin the fact that changes in environmental conditions along the Chilean coast due to climate change (e.g., increased anoxic coastal waters) may have significantly negative consequences on the populations of these ecologically important species and the associated taxa within their ecosystems.
- PublicationLatitudinal changes in the lipid content and fatty acid profiles of juvenile female red squat lobsters (Pleuroncodes monodon) in breeding areas of the Humboldt Current System(PLOS, 2021)
; ;Quispe-Machaca, Marco ;Guzmán-Rivas, Fabián ;Queirolo, DanteAhumada, MauricioThe red squat lobster Pleuroncodes monodon is a species of high commercial value that inhabits the Humboldt Current System. Along the Chilean coast, two populations are exploited by the fishing industry, one located off the coast of Coquimbo and the other off the coast of Concepción. Yet, it is unknown whether there are differences in the “bioenergetic fuel” (measured as lipid content and fatty acid profile) of juvenile populations of these two fishing units and whether these bioenergetic compounds can be modulated by differences in the environmental parameters (such as temperature or chlorophyll-a) of their breeding areas. To shed some light on this, we measured the lipid content and fatty acid profiles of the viscera and muscle of juvenile female red squat lobsters from these two fishing units, specifically from breeding areas near long-exploited fishing grounds: a) the northern fishing unit (NFU, from 26°S to 30°S) and b) the southern fishing unit (SFU, from 32°S to 37°S). We found differences in the lipid content, fatty acid profiles, and ratios of saturated fatty acids (C16:0/C18:0) of juvenile females from these two locations. In addition, the essential fatty acids (DHA/EPA) found in the viscera versus the muscle of these lobsters varied significantly. Juvenile females from the SFU (i.e. Concepción) showed a higher lipid content compared to the juvenile females from the NFU (i.e. Coquimbo). Consistently, individuals from the SFU had a higher content of fatty acids, which also proved to be richer in saturated and monounsaturated fatty acids compared to those from the NFU. Our results are important for the fisheries in both areas because these juvenile populations are the source of new recruits for the adult populations that are exploited by the fishing industry. Our study also aids in determining which populations are healthier or of better quality in bioenergetic terms. Furthermore, increasing the incorporation of bioenergetic parameters in fishery models is essential for the recruitment and stock assessment within an ecosystem approach, since it allows for the evaluation of the nutritional condition of different fishing populations. - PublicationIntra-individual variability in biochemical constituents and fatty acid composition of adult jumbo squid (Dosidicus gigas) in the southeastern Pacific Ocean(Elsevier, 2021)
; ;Quispe-Machaca, Marco ;Guzmán-Rivas, FabiánIbáñez, ChristianIn marine invertebrates, the bioenergetic fuel available for fundamental physiological processes (growth, reproduction) may present intra-individual variability depending on the storage organ, sex and state of sexual maturity. This variability is considered relevant information for fishery management. In the squid Dosidicus gigas, an important fishery resource, we analyzed adult males (immature vs. mature) and females (immature I vs. immature II) off the coast of Chile. Their bioenergetic fuel (protein, glucose, lipid and fatty acid content-FAs) was quantified in different organs of the body (digestive gland, gonad and mantle). When comparing the organs of males at both stages of maturity, a greater amount of glucose and lipids were observed in the digestive gland than in the gonad and mantle, while a higher protein content was recorded in the gonad. In turn, the same tendency of biochemical variations among the organs was observed for the female at both stages. Regarding the FA profiles of the analyzed organs, the digestive gland had the highest mean proportion of FAs. However, no significant differences were observed related to sex and sexual maturity. According to the multivariate analyses for both sexes and maturity stages, the FA profiles of the mantle and gonad showed overlap and a high similarity, while the profile of the digestive gland was completely dissimilar. Our findings indicate that D. gigas from Chilean coastal waters showed, mainly in the digestive gland, high levels of all biochemical constituents, which are obtained through food and stored in their organs as bioenergetic fuel, and may then be used for the subsequent process of migration and reproduction in oceanic waters. - PublicationTemporal variations in the bioenergetic reserves of Concholepas concholepas (Gastropoda: Muricidae) in contrasting coastal environments from the Humboldt current system(Elsevier, 2021)
; ;Lazo-Andrade, Jorge ;Guzmán-Rivas, Fabián ;Espinoza, Pepe ;García-Huidobro, M. ;Aldana, MarcelaPulgar, JoséChanges in environmental conditions play an important role in essential biological processes such as reproduction, which is partially driven by an organism’s diet. Here, we evaluate spatio-temporal variations in the bioenergetic reserves (lipids and fatty acids) of the fishery resource Concholepas concholepas (Loco), a prominent benthic carnivorous gastropod. We used data from summer (January) and winter (July) from two coastal localities that shown contrasting environmental conditions in central Chile (Quintay and Las Cruces). The results indicate that there is a correlation between the fatty acid profiles and the interactions between seasonality and locality. This was particularly evident among the fatty acid concentrations of docosahexaenoic (DHA, C22:6n-3), eicosapentaenoic (EPA, C20:5n-3) and arachidonic (ARA, C20:4n-6) acids, which were high in winter, in both localities. Contrastingly, palmitic (C16:0) and stearic (C18:0) acids were present among all comparisons at stable concentrations. These findings suggest an influence of environmental conditions on the availability and quality of the prey of C. concholepas, in both localities. Moreover, the high concentration of essential fatty acids during winter, could suggest an adaptive physiological response, to ensure reproductive success. This knowledge is indispensable to improve regulatory measures for the extraction periods of marine resources, towards a more sustainable fishery, in the Humboldt Current System. - PublicationSeasonal variation in reproductive parameters of the squat lobster Pleuroncodes monodon from a South Pacific populationPleuroncodes monodon from the Chilean coast has seasonal reproduction. During the seasonal period, females and their eggs are exposed to seasonal variation in environmental conditions. In P. monodon populations inhabiting the Southern Pacific coast near Concepción, Chile, we quantified late summer (February–March 2014) and late winter (August–September 2014) seasonal variations in female reproductive parameters (carapace length, fecundity, reproductive output (RO), ash weight, organic content) as well as eggs parameters (length, volume, dry weight, organic content). There was conspicuous seasonal variation in the main reproductive parameters of this species. During the summer, the number of eggs and organic content of females were higher than winter, whereas RO was slightly higher in winter than in summer. Significant variation in the size and biomass of the eggs was also found between seasons. For example, eggs laid in summer were smaller, had a lower measured dry mass, and had a lower organic content than eggs laid in winter. Seasonal variations in the fecundity and size of the eggs have implications for fishery models, which can be used to estimate the relative contribution of different cohorts to recruitment and stability of adult benthic populations.
- PublicationEffect of starvation on the nutritional condition of early zoea larvae of the red squat lobster Pleuroncodes monodon (Decapoda, Munididae)(Taylor & Francis, 2016)
; ;Espinoza-Vásquez, Celeste ;Guzmán-Rivas, FabiánBascur-Bascur, MiguelOne of the key factors affecting larval survival is food availability. This study investigated the influence of starvation on the nutritional condition of zoea I larvae of Pleuroncodes monodon. Experimental treatments with differential periods of starvation and subsequent feeding (point of no return: PNR) in addition to treatments with differential periods of feeding and subsequent starvation (point of reserve saturation: PRS) were used to quantify larval survival and the occurrence of lipid droplets in the hepatopancreas. Larval survival differed significantly depending on the starvation and feeding treatment administered. A high percentage of survival was found for the starvation treatment until day 1 (S1-PNR), for the feeding treatment until day 4 (F4-PRS), and for the continuously fed control groups (FC). Survival was minimal for the starvation treatment lasting until day 7 (S7-PNR) and for the continuously starved control groups (SC). In turn, similar tendencies were observed in the utilization of energy reserves; the lipid droplets significantly decreased throughout the PNR treatment, while the presence of lipid droplets gradually increased during the PRS treatment. All these larval condition parameters can be used in fishery models of population dynamics, which estimate the nutritional status of the offspring and their effects on survival.