Options
Dr. Urzúa-Osorio, Ángel
Nombre de publicación
Dr. Urzúa-Osorio, Ángel
Nombre completo
Urzúa Osorio, Ángel Gabriel
Facultad
Email
aurzua@ucsc.cl
ORCID
25 results
Research Outputs
Now showing 1 - 10 of 25
- PublicationSpatio-temporal changes in the biochemical parameters of the fishery resource Concholepas concholepas (Gastropoda: Muricidae) in the Southeastern Pacific Ocean(Elsevier, 2021)
; ;Lazo-Andrade, Jorge ;Guzmán-Rivas, Fabián ;Espinoza, Pepe ;García-Huidobro, M. ;Aldana, MarcelaPulgar, JoséThe fishery resource Concholepas concholepas is a key species in the benthic marine ecosystems of the Southeastern Pacific Ocean. In the present study, the spatio-temporal changes in the biochemical parameters were evaluated for adult individuals of C. concholepas. They were sampled in summer and winter under upwelling and Non-upwelling conditions in two Management and Exploitation Areas for Benthic Resources of Valparaíso, Chile. The results indicated that the variation in the biochemical parameters is explained to a greater extent by the season. For example, in both upwelling and Nonupwelling conditions, we found a higher content of total lipids, proteins, glucose, and energy in winter than summer. Temporal variations can be explained by the reproductive process after summer season, in which the egg spawning require a greater energy reserves to be perform. Nonetheless, differences in the nutritional status of preys along seasons of the year, can also influence on these results. In fact, these variations in the biochemical parameters of C. concholepas may be indicative of an adaptive seasonal physiological response to the environment for maintaining an optimal energy budget year-round. Altogether, this knowledge will contribute to the Management and Exploitation Areas for Benthic Resources, improving regulatory measures during the annual period of captures and landings of C. concholepas, favoring a more sustainable fishery in the Southeastern Pacific Ocean within an ecosystem approach. - PublicationSeasonal dynamics of biochemical composition and fatty acids of swordfish (Xiphias gladius) in the Southeast Pacific Ocean off the coast of Chile(Elsevier, 2021)
; ;Lazo-Andrade, Jorge ;Guzmán-Rivas, Fabián ;Barría, Patricio ;Ortega, JuanMora, SergioIn the Southeast Pacific Ocean, Xiphias gladius migrates through the Chilean coastal zone for feeding. Here, it forages for different prey items from autumn to spring, acquiring a great variety of energy and nutritional reserves. We evaluated seasonal variations in the biochemical reserves (i.e., contents of lipids, proteins, and glucose), total energy content and fatty acid profile of specimens captured during the austral autumn, winter, and spring. Our results show that higher amounts of lipids were found in the winter and spring, while protein and glucose were higher in the autumn. Thus, the energy content showed significant differences, with higher levels in winter and spring. Furthermore, the fatty acid profile was more diverse in the spring than the autumn and winter and was characterized by higher amounts of polyunsaturated fatty acids. These findings suggest that temporal changes in the biochemical reserves, total energy content and fatty acid profile support the idea of a “trophic migration” (i.e., the feeding period) established by the dynamics of fishery fleets. The high amounts of lipids and diverse fatty acid profile found in the spring could indicate the end of the trophic migration during this season. Thus, X. gladius may reach an optimum nutritional condition in the spring and make energetic adjustments to carry out its reproductive migration during the austral summer. Therefore, this species seems to meet the high energy demands of the reproductive season by foraging for a wide range of prey items from autumn to spring and storing an increased amount of lipids at the end of the feeding period. Overall, our data provides crucial baseline knowledge for future research on the ecophysiology of X. gladius, as well as for the management and conservation of this fishery resource under an ecosystem approach. - PublicationBioenergetic traits of three keystone marine species in the food web of a pristine Patagonian fjord(Elsevier, 2021)
;Ruiz Ruiz, Paula A.; ;Quiroga, EduardoThe Patagonian fjords are high-latitude aquatic ecosystems, highly sensitive to climate change and play a key role in the exchange of organic matter and carbon flows between terrestrial and marine environments. The bioenergetic composition of species living in these ecosystems are fundamental to understanding the distribution, seasonal variations, and exchange of organic matter within benthic communities. This study reports on the bioenergetic characteristics (lipids, protein, glucose, and energy content) of three keystone species with different life-style and feeding habits: a benthic sea star (Ctenodiscus australis); squat lobster (Munida gregaria); and a Patagonian notothenioid (Eleginops maclovinus). Samples were obtained from the Yendegaia Fjord (54°40'S - 68°50′W) in Chilean Patagonia. Our results indicate that M. gregaria has higher concentrations of lipids, proteins, glucose, and total energy compared to either E. maclovinus or C. australis. The predominance of lipids in all species is possibly related to physiological characteristics and feeding strategies. Also, may be associated with the availability of food and environmental conditions typical of a fjord ecosystem and the reproductive stage in that they were collected. These results suggest that marine animals inhabiting glacially influenced environments with low temperature and low productivity, requires a convergent physiological strategy characterized by high levels of energy storage (i.e. lipids) for metabolism and key bioenergetic processes such as growth and reproduction. - PublicationHow does emersion time affect embryos of coastal marine invertebrate species? Biochemical responses of three porcelain crabs from the Southeastern PacificPorcelain crabs that inhabit contrasting environments along the Southeastern Pacific coast have developed physiological adaptive responses to the harsh environmental conditions. However, it is not yet known if these responses are already present in early life stages, in embryos, for example, which are more vulnerable to environmental fluctuations than adults. In this study, we subjected ovigerous female crabs of three crab species (Allopetrolisthes punctatus,Petrolisthes laevigatus, andPetrolisthes violaceus) to different periods of emersion (0, 1, 3, and 5 hr) to measure the weight and biochemical parameters (i.e., glucose and lactate) in their embryos after a period of stress induction through emersion. The results indicate that after five hours of emersion,P. laevigatus' embryos had the highest dry weight. This same trend was observed in the embryos ofP. violaceus.Allopetrolisthes punctatus' embryos had the lowest weight. The embryos' glucose content inP. laevigatusandP. violaceuswas consumed during the emersion time, while in embryos ofA. punctatusit remained relatively constant. The highest glucose content was reported inP. laevigatus, followed byP. violaceusandA. punctatus. The lactate content showed an opposite trend and was gradually accumulated with increasing emersion time.Petrolisthes laevigatushad the highest lactate content. This study reveals that the early ontogeny of these porcelain crabs is well adapted to long periods of emersion, showing biochemical adaptive responses linked to aerobic metabolism. These adaptations could reflect a distinctive physiological trait, explaining why porcelain crabs are able to survive in contrasting conditions.
- PublicationThe cascade of effects caused by emersion during early ontogeny in porcelain crabs of the Southeast Pacific coast: Biochemical responses of offspringPetrolisthes crabs inhabit a wide range of coastal environments, from the upper intertidal to the subtidal, experiencing regular changes in pH, salinity, and temperature. Hence, such subtidal and intertidal invertebrates are likely to show physiological and biochemical adaptive responses in order to successfully develop during early ontogenetic stages and thus reach reproduction. We herein evaluated the biochemical responses to contrasting environmental conditions of the early ontogenetic stages of two coastal crabs from the Southeast Pacific coast: Petrolisthes laevigatus and Allopetrolisthes punctatus. For this purpose, stage I embryos of both species were subjected to two treatments: (1) emersion (i.e., a daily 3 h aerial exposure until the zoeas hatched) and (2) immersion (i.e., uninterrupted underwater submersion until the zoeas hatched); the total contents of glucose, proteins, lipids, and fatty acids of the organisms were measured in stage I embryos and recently hatched zoeas in order to assess the biochemical constitution of the two species. Both species showed changes in their energetic reserves when treatments within species were compared. Our results found that A. punctatus was negatively affected by stressful periods of emersion, while P. laevigatus showed the opposite tendency and was affected by periods of immersion. The sensitivity of the response and the contrasting outcomes for these two crabs underpin the fact that changes in environmental conditions along the Chilean coast due to climate change (e.g., increased anoxic coastal waters) may have significantly negative consequences on the populations of these ecologically important species and the associated taxa within their ecosystems.
- PublicationStable isotope and fatty acid analyses reveal significant differences in trophic niches of smooth hammerhead Sphyrna zygaena (Carcharhiniformes) among three nursery areas in northern Humboldt Current System(PeerJ, 2021)
; ;Górski, Konrad ;Segura-Cobeña, Eduardo ;Alfaro-Shigueto, JoannaMangel, JeffreyFishery pressure on nursery areas of smooth hammerhead in northern Peruvian coast have become a serious threat to sustainability of this resource. Even though, some management actions focused on conservation of the smooth hammerhead populations were proposed in recent years, their scientific foundations are often limited, and biomass of smooth hammerhead in Peruvian waters continues to decrease. To inform management and conservation, this study aims to evaluate the trophic niche of smooth hammerhead juveniles from three nursery areas in the northern Peruvian coast using stable isotope and fatty acid analyses. First, we compared the environmental characteristics of each nursery area (i.e., sea surface temperature and chlorophyll-a concentration) and concluded that nursery areas differed significantly and consistently in sea surface temperature. Subsequently, we evaluated isotopic composition of carbon and nitrogen and fatty acid profiles of muscle and liver tissues collected from juvenile smooth hammerhead from each nursery area. We found that juvenile smooth hammerhead captured in San José were enriched in heavier 13C and 15N isotopes compared to those captured in Máncora and Salaverry. Furthermore, the broadest isotopic niches were observed in juveniles from Máncora, whereas isotopic niches of juveniles from Salaverry and San José were narrower. This difference is primarily driven by the Humboldt Current System and associated upwelling of cold and nutrient rich water that drives increased primary production in San José and, to a less extent, in Salaverry. Compared to smooth hammerhead juveniles from Máncora, those from San José and Salaverry were characterised by higher essential fatty acid concentrations related to pelagic and migratory prey. We conclude that smooth hammerhead juveniles from three nursery areas in the northern Peruvian coast differ significantly in their trophic niches. Thus, management and conservation efforts should consider each nursery area as a unique juvenile stock associated with a unique ecosystem and recognize the dependence of smooth hammerhead recruitment in San José and Salaverry on the productivity driven by the Humboldt Current System. - PublicationLatitudinal changes in the lipid content and fatty acid profiles of juvenile female red squat lobsters (Pleuroncodes monodon) in breeding areas of the Humboldt Current System(PLOS, 2021)
; ;Quispe-Machaca, Marco ;Guzmán-Rivas, Fabián ;Queirolo, DanteAhumada, MauricioThe red squat lobster Pleuroncodes monodon is a species of high commercial value that inhabits the Humboldt Current System. Along the Chilean coast, two populations are exploited by the fishing industry, one located off the coast of Coquimbo and the other off the coast of Concepción. Yet, it is unknown whether there are differences in the “bioenergetic fuel” (measured as lipid content and fatty acid profile) of juvenile populations of these two fishing units and whether these bioenergetic compounds can be modulated by differences in the environmental parameters (such as temperature or chlorophyll-a) of their breeding areas. To shed some light on this, we measured the lipid content and fatty acid profiles of the viscera and muscle of juvenile female red squat lobsters from these two fishing units, specifically from breeding areas near long-exploited fishing grounds: a) the northern fishing unit (NFU, from 26°S to 30°S) and b) the southern fishing unit (SFU, from 32°S to 37°S). We found differences in the lipid content, fatty acid profiles, and ratios of saturated fatty acids (C16:0/C18:0) of juvenile females from these two locations. In addition, the essential fatty acids (DHA/EPA) found in the viscera versus the muscle of these lobsters varied significantly. Juvenile females from the SFU (i.e. Concepción) showed a higher lipid content compared to the juvenile females from the NFU (i.e. Coquimbo). Consistently, individuals from the SFU had a higher content of fatty acids, which also proved to be richer in saturated and monounsaturated fatty acids compared to those from the NFU. Our results are important for the fisheries in both areas because these juvenile populations are the source of new recruits for the adult populations that are exploited by the fishing industry. Our study also aids in determining which populations are healthier or of better quality in bioenergetic terms. Furthermore, increasing the incorporation of bioenergetic parameters in fishery models is essential for the recruitment and stock assessment within an ecosystem approach, since it allows for the evaluation of the nutritional condition of different fishing populations. - PublicationComparison of lipids and fatty acids among tissues of two semiterrestrial crabs reveals ecophysiological adaptations in changing coastal environmentsDecapods have successfully colonized changing coastal habitats throughout the world by adapting their behavior, physiology, and biochemistry. Biochemical reserves, such as lipids and fatty acids (FAs), play fundamental roles in this adaptation process. These energy reserves are key for the development of decapods and their composition mainly depends on the type and quality of food available in their habitats. This study evaluated the lipid content and FA composition of three tissues (hepatopancreas, gills, and muscle) in two widely distributed, semi-terrestrial coastal crab species in Chile, Cyclograpsus cinereus from the upper intertidal and Hemigrapsus crenulatus from estuaries. This evaluation aimed to assess the physiological role of the bioenergetic reserves of these crabs, which tolerate fluctuating environmental conditions. Our results showed that both species had a higher lipid content in the hepatopancreas and a lower lipid content in its gills and muscle. All three of the evaluated tissues in C. cinereus showed high contents of saturated fatty acids (SFAs), and its hepatopancreas displayed the highest contents of monounsaturated (MUFAs) and polyunsaturated fatty acids (PUFAs). In turn, H. crenulatus had the highest contents of MUFAs and PUFAs in its gills and muscle tissues, including an important amount of eicosapentaenoic acid (EPA). The FA content of C. cinereus may indicate an adaptive physiological response aimed at maintaining its cellular fluid balance during periods of desiccation in the upper intertidal zone. In contrast, the FAs found in H. crenulatus may be linked to the high activity of the sodium‑potassium pump in its gills, in order to maintain osmoregulation in estuaries.
- PublicationFatty acid biomarkers in three species inhabiting a high latitude Patagonian fjord (Yendegaia Fjord, Chile)(Springer, 2021)
;Ruiz Ruiz, Paula A.; ; ;Quiroga, EduardoRebolledo, LorenaThe study of fatty acid biomarkers in trophic structures at sub-polar latitudes is fundamental in describing energy fluxes across ecosystems characterized by complex inter-specific interactions. Due to the presence of certain essential fatty acids obtained exclusively from predator–prey interactions, fatty acid biomarkers are widely used to identify trophic interactions. This study analyzed fatty acid compositions in three species inhabiting a relatively pristine Patagonian fjord. This fjord is geographically difficult to access, so there are very little sampling opportunities, biological and oceanographic information. In the three species collected (Ctenodiscus australis (Loven in Lütken 1871) (Echinodermata, Asteroidea, Ctenodiscidae); Munida gregaria (Fabricius 1793) (Arthropoda, Malacostraca, Munididae); Eleginops maclovinus (Cuvier 1830) (Chordata, Actinopterygii, Eleginopsidae)) along this remote area were evaluated their fatty acid trophic markers as a tool to differentiate dietary components and dietary habits. The study reported significant differences in the amount of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA), with the highest concentrations of all fatty acids in M. gregaria. The last suggests that M. gregaria is considered as a good quality food source or biological component that might support the fjord trophic web in the Southern Hemisphere. The results describe diet compositions in sampled species, and differences among species for fatty acid compositions and proportions. This provides an initial basis for future modeling or projecting how benthic ecosystems of fjords and Patagonian channels respond to food intake, particularly in environments associated with glacial systems characterized by a low phytoplankton biomass and greater sensitivity to climate variability. - PublicationIntra-individual variability in biochemical constituents and fatty acid composition of adult jumbo squid (Dosidicus gigas) in the southeastern Pacific Ocean(Elsevier, 2021)
; ;Quispe-Machaca, Marco ;Guzmán-Rivas, FabiánIbáñez, ChristianIn marine invertebrates, the bioenergetic fuel available for fundamental physiological processes (growth, reproduction) may present intra-individual variability depending on the storage organ, sex and state of sexual maturity. This variability is considered relevant information for fishery management. In the squid Dosidicus gigas, an important fishery resource, we analyzed adult males (immature vs. mature) and females (immature I vs. immature II) off the coast of Chile. Their bioenergetic fuel (protein, glucose, lipid and fatty acid content-FAs) was quantified in different organs of the body (digestive gland, gonad and mantle). When comparing the organs of males at both stages of maturity, a greater amount of glucose and lipids were observed in the digestive gland than in the gonad and mantle, while a higher protein content was recorded in the gonad. In turn, the same tendency of biochemical variations among the organs was observed for the female at both stages. Regarding the FA profiles of the analyzed organs, the digestive gland had the highest mean proportion of FAs. However, no significant differences were observed related to sex and sexual maturity. According to the multivariate analyses for both sexes and maturity stages, the FA profiles of the mantle and gonad showed overlap and a high similarity, while the profile of the digestive gland was completely dissimilar. Our findings indicate that D. gigas from Chilean coastal waters showed, mainly in the digestive gland, high levels of all biochemical constituents, which are obtained through food and stored in their organs as bioenergetic fuel, and may then be used for the subsequent process of migration and reproduction in oceanic waters.
- «
- 1 (current)
- 2
- 3
- »