Options
Dr. Oyarzo-Vera, Claudio
Nombre de publicación
Dr. Oyarzo-Vera, Claudio
Nombre completo
Oyarzo Vera, Claudio Andrés
Facultad
Email
coyarzov@ucsc.cl
ORCID
13 results
Research Outputs
Now showing 1 - 10 of 13
- PublicationSeismic and coastal vulnerability assessment model for buildings in ChileThis article proposes a vulnerability assessment model for evaluating buildings’ expected seismic performance, as well as their vulnerability to tsunamis. The objective of this assessment is to provide appropriate information for decision makers regarding the need of repairs and reinforcement of buildings or other mitigation measures that need to be applied in a territory. A procedure for assessing seismic vulnerability and another methodology for evaluating tsunami vulnerability faced by coastal structures is presented. Finally, a method that integrates both procedures is proposed, providing a combined index of vulnerability. The assessment model was applied to the central area of the city of Talcahuano, Chile, which was affected by the 2010 Maule earthquake and tsunami.
- PublicationNon-Destructive assessment of the elastic properties of Low-Grade CLT panels(Forests, 2021)
; ; ;Opazo-Vega, Alexander ;Benedetti, FrancoNuñez-Decap, MarioThe use of cross-laminated timber panels (CLT) made of low-grade structural timber has steadily increased in developing countries. These panels usually present several natural defects, which can cause a high local variation of their orthotropic elastic properties, generating future structural serviceability problems. Our work aims to estimate the local variability of the elastic properties in low-grade CLT panels by combining nondestructive transverse vibration testing, numerical simulations, and regional sensitivity analysis (RSA). Four three-layer Radiata pine CLT panels were subjected to transverse vibration tests with supports at four points. Besides, a series of numerical simulations of the panels, considering the local variability of the elastic properties of the panels in eight zones, were carried out using the finite element method. Then, RSA analysis was performed to study in which ranges of values the panels’ elastic properties generated lower differences between the measured versus simulated dynamic properties. Finally, a structural quality control indicator was proposed for the CLT panels based on keeping low the probability that the elastic properties in the central zones do not exceed minimum acceptable values. The results obtained suggest that the proposed methodology is suitable for segregating CLT panels with high concentrations of defects such as pith presence. - PublicationNon-Destructive assessment of the dynamic elasticity modulus of Eucalyptus nitens timber boardsEucalyptus nitens is a fast-growing wood species with a relevant presence in countries like Australia and Chile. The sustainable construction goals have driven the search of structural applications for Eucalyptus nitens; however, this process has been complicated due to the defects usually presented in these timber boards. This study aims to evaluate the dynamic elasticity modulus(Exd) of Eucalyptus nitens timber boards through non-destructive vibration-based tests. Thirty-six timber boards with different levels of knots and cracks were instrumented and tested in a simply supported condition by measuring longitudinal and transverse vibrations. In the first stage, the Exd was calculated globally through simplified normative formulas. Then, in a second stage, the local variability of the Exd was estimated using operational modal analysis (OMA), finite element numerical simulations (FEM), and regional sensitivity analysis (RSA). The positive correlation found between the global static modulus of elasticity and Exd suggests that non-destructive techniques could be used as a reliable and fast alternative for the assessment of bending stiffness. Finally, the proposed method to estimate the local variability of Exdt based on the combination of OMA, FEM,and RSA techniques was useful to improve the structural selection process of timber boards forlightweight social housing floors.
- PublicationA roller type base isolation device with tensile strength(Shock and vibration, 2020)
; ; ;Pardo, E.Roco, ABase isolation is an efficient strategy for protecting structures, especially in countries with high seismic risk, such as Chile. This paper presents the conceptual model, mathematical model, experimental validation and numerical analysis of a roller type base isolation device that aims to solve problems of limited tensile strength (compared to its compressive strength) and lateral instability of all types of rubber bearing isolators when faced with elevated axial load. The conceptual model describes the device’s components and operation. The mathematical model establishes its constitutive law based on the equilibrium equations formulated considering large lateral displacements. Experimental tests were run on a shake-table with a load frame to simulate the isolator’s interaction with the superstructure, considering a combination of the device’s design parameters, in order to identify their effect. In the numerical analysis, six simple frame buildings were modelled and subjected to a seismic record using the proposed roller isolator. Error parameters were obtained between the numerical predictions and the experimental results in each loading and unloading cycle, varying between 1.6% and 5.1% for dissipated energy and 4.0% to 17.7% for the magnitude of force. The proposed device worked as a seismic isolator, reducing the structure’s response in a magnitude order in relation to the building fixed on its base. - PublicationDamage assessment of the May 31st, 2019, Talcahuano tornado, Chile(International journal of disaster risk reduction, 2020)
; ; ; ; ;Saez, Boris ;Gutierrez, Gladys ;Quinones, CatalinaBobadilla, RominaOn May 31st, 2019, a tornado hit the city of Talcahuano, Chile, generating significant damage to structures and leaving one person dead. The objective of the present paper is to report on damage to structures in Talcahuano. A preliminary survey was performed by the Municipality of Talcahuano and covered the entire affected area with a cellphone web application used to report the severity and distribution of damage. A more comprehensive damage survey was conducted in the Brisa del Sol neighborhood in the Medio Camino area by the UCSC team to assess the damage distribution within an area with well-defined and homogeneous building typologies. The results of the field surveys showed that the tornado behaved as a skipping tornado and that most damage to houses consisted of wall opening damage, roof sheathing failure, and wall cover removal (EF0), followed by partial roof removal(EF1). It was noticeable that self-built systems (house additions) were more damaged than original houses, which may be explained by the fact that such structures do not always meet minimum building standards. It is recommended that field surveys conducted by municipalities and the Ministry of Social Development considertypical damage types rather than just categories such as minor, moderate, or major. Finally, it is recommendedthat the feasibility of implementing mitigation measures such as stricter wind load provisions and dual-objective tornado design philosophy in the Concepci´on-Talcahuano area be analyzed. - PublicationDiagnóstico estructural de un edificio de hormigón armado basado en su perfil bio-sísmico y un análisis dinámico incrementalEn este estudio se presenta la evaluación global de la salud estructural de un edificio habitacional de 14 pisos de altura, potencialmente vulnerable a sufrir daños significativos debido a terremotos y tsunamis. Este edificio fue construido en el año 2013 y está ubicado en la zona costera de Concepción (Chile), en el área afectada por el terremoto Mw = 8.8 del Maule 2010. La evaluación estructural se realizó combinando ensayos destructivos (extracción y ensayo de testigos) y no-destructivos (esclerómetro). Utilizando la información obtenida experimentalmente se generó un modelo numérico lineal del edificio, el cual fue utilizado para evaluar la salud global del edificio mediante una metodología llamada perfil bio-sísmico y un análisis dinámico incremental. Los resultados de este estudio demuestran que el edificio presentaría un buen desempeño frente a eventos sísmicos de gran envergadura,pero sería susceptible a presentar daño producto de los desplazamientos que experimentaría, ya que estos superan el rango de desplazamiento permitido por las juntas de expansión sísmica.
- PublicationMonotonic response of exposed base plates of columns: Numerical study and a new design methodThis paper describes a numerical study of the behavior of exposed base plates of columns under the action of axial and bending loads. The aim of this research is to evaluate numerically the failure mechanisms on stiffened and non-stiffened base plates and propose a new design method. The effects of base plate thickness, location of anchor rods, location of stiffeners and tensile strength of anchor rods were considered in the analysis. Sixteen finite elements simulations were performed considering different combinations of the above mentioned parameters. The results show a fragile response in the base plates when high resistance anchor rods are used. The anchor rods worked as fuse elements in base plates with a large thickness or many stiffeners. Additionally, the models with anchor bars located outside of the column flanges showed lower flexural strength and rotational stiffness compared to the models with anchor rods located between column flanges. The simulations showed that the base plate strength was determined by the simultaneous failure mechanisms of two or more components, different to what is stated in current design guides. Finally, the new method is suitable to design base plates with stiffened and not stiffened configurations, which unlike traditional design methods, show a good adjustment with numerical models.
- PublicationDamping assessment of lightweight timber floors under human walking excitations(Applied Sciences, 2019)
;Opazo-Vega, Alexander ;Muñoz-Valdebenito, FranciscoVibrations on timber floors are among the most common serviceability problems in social housing projects. The presence of low damping levels on these floors could cause excessive vibrations in a range of frequency and amplitude that generate discomfort in users. This study focuses on the influence of the damping ratio in the dynamic serviceability of social housing timber floors due to walking excitations. More than 60 human-walking vibration tests were conducted on both laboratory and in-situ timber floors. The floors were instrumented with accelerometers, and fundamental modal damping ratios were estimated by applying Enhanced Frequency Decomposition Domain (EFDD) and Subspace Stochastic Identification (SSI) methods. The vibration dose value (VDV) was used to estimate the dynamic serviceability of floors. The results indicated that timber floors had an impulsive-type vibration response, with fundamental damping ratios between 1.9% and 14.8%, depending on their constructive characteristics. The in-situ floors had damping ratios between two to three times greater than the laboratory floors due to the presence of non-structural elements. Finally, it was possible to demonstrate that the floors with the highest damping ratios reached lower vibration dose values and, therefore, a better dynamic serviceability performance. - PublicationDamage assessment of squat, thin and lightly-reinforced concrete walls by the Park & Ang damage index(Journal of Building Engineering, 2019)
;Carrillo, Julian; Blandón, CarlosDamage progression indexes are widely used to evaluate the performance of structural elements in buildings and bridges subjected to seismic actions. Although the Park & Ang damage index is currently implemented in several computational tools, the index has not been calibrated for squat and thin reinforced concrete (RC) elements controlled by shear deformations. It has been observed that the equations originally proposed for the Park & Ang damage index are unsuited for these types of structural elements, which are characterized by a failure mode dominated by shear instead of flexural deformations. The index was evaluated in this study for squat, thin and lightly-reinforced concrete walls using experimental data from a program comprising monotonic and reversedcyclic load testing of 25 RC squat cantilever walls. The experimental program included walls, with and without openings, having height-to-length ratios equal to 0.5, 1.0 and 2.0. Full-scale wall thickness and clear height were 100 mm and 2.4 m, respectively. The specimens were built using three different types of concrete (normal-weight, light-weight and self-consolidating) with nominal compressive strength of 15 MPa. A novel formulation for the parameter β included in the Park & Ang damage index was proposed in this study using key variables of the wall specimens such as web reinforcement ratio and cumulative ductility. Comparison between the computed damage index and crack pattern evolution observed in wall specimens at different damage states demonstrated the ability of the model to numerically assess the damage of the wall specimens. Hence, this new formulation proposed for parameter β leads to a better estimation of damage for this particular type of elements when applying the broadly used Park & Ang damage index. - PublicationA nonlinear model for multilayered rubber isolators based on a co-rotational formulation(International journal of disaster risk reduction, 2017)
; ; ;J de la LleraMiranda, S.This article proposes a geometrically nonlinear co-rotational model aimed to characterize the mechanical behavior of elastomeric seismic isolators. The model is able to capture the axial and lateral coupling in both axial directions, i.e. compression and tension of the isolator. Also reproduces the instability the loads in tension as well as in compression, and provides theoretical evidence of the non-symmetric behavior of the isolator in these two directions. To validate model results, a quasistatic analysis was performed on a typical isolator with many different shape factors. From the parametric analysis performed, it is observed that buckling loads are higher in tension than in compression. However, as the shape factor of the isolator increases, the behavior in compression and tension becomes symmetric. It becomes apparent that significant differences in normal stresses and strains under tensile and compressives loads are observed for axial loads smaller than 10% of the nominal buckling load. The example presented shows that lateral displacements of about ±25% of isolator radius and tension forces up to 10% of the buckling load are possible without inducing cavitation in the rubber. Accuracy of the model was also tested against finite element model results and experimental data showing satisfactory results. Furthermore, a response-history analysis of an isolated structure is presented and compared for two isolator models: the two-spring model and the model proposed herein. Finally, material nonlinearity was introduced in the dynamic analysis using a Bouc-Wen type element in parallel with the isolator. The responses are similar between models; however, significant differences occur locally in the isolator for high axial loads and/or large lateral displacements.