Research Outputs

Now showing 1 - 8 of 8
  • Publication
    Effectiveness of a load-level isolation system (LLIS) for industrial steel storage racks: Experimental validation on a shake table
    (Elsevier, 2025)
    Sanhueza-Cartes, M
    ;
    ; ;
    Almazán, J.L
    ;
    Roco-Videla, Á
    This article presents the validation of a load-level isolation system designed for seismic protection and vibration control of industrial storage racks. This system exhibits the necessary versatility to protect the structure against different seismic intensities. The objective is to verify the effectiveness of the studied load-level isolation system in reducing the structural response and improving the seismic performance of the industrial racking, validating it with experimental tests. This was carried out on a shaking table with a total of 12 two-level rack tested at full scale, with 6 in conventional use conditions and 6 with the load-level isolation system. The 2010 earthquake in El Maule, Chile, was used as a forcing, scaled in the frequency domain to adjust its response spectrum with the design spectrum of NCh2369Of.2023. In the tests, the amount and distribution of the mass were varied, repeating the test for the design earthquake scaled to 10 %, 20 %, … 100 %. The results indicated that the implementation of the isolation system achieved a reduction of between 40 % and 81 % in floor deformations, and between 49 % and 63 % in the base shear, being able to resist up to at least 120 of the design earthquakes considered. The isolation system proved effective in protecting the structural integrity of the storage rack from low, medium, and high-intensity earthquakes.
  • Publication
    Cyclic behavior of beam-to-upright bolted connections: Experimental study of Chilean steel storage racks
    (Elsevier, 2025) ;
    Mata, Ramón
    ;
    Sanhueza, Marcelo
    ;
    Hernández, Matías
    ;
    ;
    Guerrero, Néstor
    In this research an experimental study to assess the cyclic behavior of bolted moment connection in racks structures is performed. The effect of bolt pretension in the response is evaluated. Sixteen full-scale steel rack joint configurations were subjected to cyclic load according to the protocol established in AISC Seismic provisions. The cyclic performance was evaluated in terms of hysteretic response, failure mechanism, energy dissipation, stiffness, and rotation on the components. Two different configurations were studied. The results showed that the steel rack connections using a 70 % of bolt pretension can accommodate a 0.8 My at 0.04 rad of drift angle, while the joints without bolt pretension reached values below 0.7 My at 4 % of rotation. The failure mechanism was controlled by weld fracture at 4 % of the rotation. A high dispersion in the energy dissipation pattern was obtained and a drop in energy dissipation of up to 4 times in all specimens tested for a 4 % rotation was developed. This phenomenon is due to the welding rupture between the beam and the L-connector. A degradation of the secant stiffness reached up to 60 % for 2 % rotation. Finally, the most important effect of bolt pretension on the cyclic response of steel rack connections was achieved in the increase of flexural resistance and rotation developed.
  • Publication
    Load-level isolator model for pallets on industrial storage racks and validation with experimental results
    (Korea Institute of Science and Technology Information, 2024) ; ;
    Sanhueza-Cartes, Marcelo
    ;
    Roco-Videla, Angel
    This paper introduces a system allows for seismic isolation of the pallet from the rack in the down-aisle direction, occupies minimal vertical space (5 cm) and ±7.5 cm of deformation range. A conceptual model of the isolation system is presented, leading to a constitutive equation governing its behavior. A first experimental campaign studying the response of the isolation system's components was conducted to calibrate the parameters of its constitutive equation. A second experimental campaign evaluated the response of the isolation system with mass placed on it, subjected to cyclic loading. The results of this second campaign were compared with the numerical predictions using the pre-calibrated constitutive equation, allowing a double-blind validation of the constitutive equation of the isolation system. Finally, a numerical evaluation of the isolation system subjected to a synthetic earthquake of one component. This evaluation allowed verifying attributes of the proposed isolation system, such as its self-centering capacity and its effectiveness in reducing the absolute acceleration of the isolated mass and the shear load transmitted to the supporting beams of the rack.
  • Publication
    Assessment of composite beam performance using GWO-ELM metaheuristic algorithm
    (Engineering with computers, 2022) ;
    Ma, Runqian
    ;
    Karimzadeh, Misagh
    ;
    Ghabussi, Aria
    ;
    Zandi, Yousef
    ;
    Baharom, Shahrizan
    ;
    Selmi, Abdellatif
    Composite beams (CBs) include concrete slabs jointed to the steel parts by the shear connectors, which highly popular in modern structures such as high rise buildings and bridges. This study has investigated the structural behavior of simply supported CBs in which a concrete slab is jointed to a steel beam by headed stud shear connector. Determining the behavior of CB through empirical study except its costly process can also lead to inaccurate results. In this case, AI models as metaheuristic algorithms could be effectively used for solving difficult optimization problems, such as Genetic algorithm, Differential evolution, Firefly algorithm, Cuckoo search algorithm, etc. This research has used hybrid Extreme machine learning (ELM)–Grey wolf optimizer (GWO) to determine the general behavior of CB. Two models (ELM and GWO) and a hybrid algorithm (GWO–ELM) were developed and the results were compared through the regression parameters of determination coefficient (R2) and root mean square (RMSE). In testing phase, GWO with the RMSE value of 2.5057 and R2 value of 1.2510, ELM with the RMSE value of 4.52 and R2 value of 1.927, and GWO–ELM with the RMSE value of 0.9340 and R2 value of 0.9504 have demonstrated that the hybrid of GWO–ELM could indicate better performance compared to solo ELM and GWO models. In this case, GWO–ELM could determine the general behavior of CB faster, more accurate and with the least error percentages, so the hybrid of GWO–ELM is more reliable model than ELM and GWO in this study.
  • Publication
    Influence of crack on the permeability of plastic concrete
    (Techno-Press, 2021) ;
    Yongqiang, He
    ;
    Alyousef, Rayed
    ;
    Alaskar, Abdulaziz
    ;
    Alabduljabbar, Hisham
    ;
    Mohamed, Abdeliazim
    ;
    Roco-Videla, Angel
    ;
    Issakhov, Alibek
    ;
    Assilzadeh, Hamid
    This study examined the relations between permeability of the concrete due to addition of new cracks. The different concrete types analyzed were standard concrete, reinforced steel fiber concrete, and reinforced concrete polypropylene fiber. In consideration of the improved polypropylene content of polypropylene fiber reinforced concrete, the crack diameter was decreased by 72-93% for up to 0.25% fiber and cracks were eliminated with 0.3% fiber inclusion. In terms of steel fiberreinforced concrete, the results showed that steel reinforcing macro fibers decrease the permeability of cracked concrete at wider crack widths. While the permeability of unreinforced concrete was the highest, 0.5% steel content resulted in lower permeability while a higher steel content concrete with 1% steel had the lowest permeability. Crack stitching phenomenon and the effect of multiple cracks may be attributed to the decrease in the permeability. With respect to normal concrete, the findings showed the crack opening displacement at the highest tension is less than 20 microns. At this loading stage, after unloading, around 80% of the displacement is restored and the residual crack opening is notably small, indicating the low impact of cracking on concrete permeability (CP) and showing that CP was increased with crack width. As a result, adding polypropylene aggregate to concrete could significantly reduce the width of crack, while adding steel fiber to concrete reduces the permeability of cracked concrete compared to normal concrete which may result in a minor crack on CP.
  • Publication
    Proof of concept of a novel frictional shock absorber: Analytical model and experimental analysis
    (Engineering Structures, 2021) ; ;
    Sanzana Jara, D.
    ;
    Roco Videla, A.
    Recurrent impact protection devices usually need to dissipate large amounts of energy to prevent damage to the infrastructure they protect and to make efficient use of them. This requires that protection devices consider some type of damping and have some mechanism to recover their original form. In this study a novel device is proposed, capable of absorbing a large part of the energy imposed by impact loads and recovering its original form autonomously. The device proposed in this article is composed of rigid parts with articulated joints, an elastic element that allows the recovery of its shape and an element that dissipates energy by friction. The necessary equations were developed to describe the non-linear behavior of the device and parametric simulations of the proposed model were performed to describe the dynamic interaction between the device and a mass that impacts. Additionally, a scale model of the device was constructed to be experimentally tested, which allowed to verify the effectiveness in the dissipation of energy, the reduction in the force transmitted to the support structures and the decrease in the rebound speed of the impacting mass. An error parameter was defined for a load-unload cycle between experimental results and analytical calculations. The error considers both the impact force and the dissipated energy, obtaining values of up to 6%. The energy absorption capacity of the device –between 83% and 93% of the impact energy– was verified experimentally, as well as the reduction of the impact speed –between 91% and 96%.
  • Publication
    A roller type base isolation device with tensile strength
    (Shock and vibration, 2020) ; ;
    Pardo, E.
    ;
    Roco, A
    Base isolation is an efficient strategy for protecting structures, especially in countries with high seismic risk, such as Chile. This paper presents the conceptual model, mathematical model, experimental validation and numerical analysis of a roller type base isolation device that aims to solve problems of limited tensile strength (compared to its compressive strength) and lateral instability of all types of rubber bearing isolators when faced with elevated axial load. The conceptual model describes the device’s components and operation. The mathematical model establishes its constitutive law based on the equilibrium equations formulated considering large lateral displacements. Experimental tests were run on a shake-table with a load frame to simulate the isolator’s interaction with the superstructure, considering a combination of the device’s design parameters, in order to identify their effect. In the numerical analysis, six simple frame buildings were modelled and subjected to a seismic record using the proposed roller isolator. Error parameters were obtained between the numerical predictions and the experimental results in each loading and unloading cycle, varying between 1.6% and 5.1% for dissipated energy and 4.0% to 17.7% for the magnitude of force. The proposed device worked as a seismic isolator, reducing the structure’s response in a magnitude order in relation to the building fixed on its base.