Research Outputs

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Remote sensing with UAVs for flood modeling: A validation with actual flood records
    (MDPI, 2023) ;
    Clasing, Robert
    ;
    Arumí, José
    ;
    Parra, Víctor
    The use of unmanned aerial vehicles (UAVs) is steadily increasing due to their capacity to capture terrain elevation data with remarkable precision and cost-effectiveness. Nonetheless, their application for estimating water surface elevations and submerged terrain, such as channel bathymetry, remains constrained. Consequently, the development of a digital terrain model that relies on UAV data during low-water periods assumes a more extensive dry channel surface area, thus alleviating the information gap regarding submerged terrain. The objective of this brief report is to validate a hydraulic model for flood calculation. To this end, a 1D steady-state hydrological model of the Ñuble River based on a UAV survey in the low-water period of 2016 was constructed in HEC-RAS v.5.0.3 and compared to water surface elevation observations of the flood on 24 June 2023. The model tends to overestimate the flood, but the errors are considered tolerable for flood calculation (on average, a 10.6% depth error was obtained for a 30-year return period flood); therefore, the hydraulic model derived from remote sensing seems to be an effective alternative for the construction of hydraulic models for flood studies.
  • Thumbnail Image
    Publication
    Analysis of the Relative Importance of the Main Hydrological Processes at Different Temporal Scales in Watersheds of South-Central Chile
    (Water, 2022)
    Medina, Yelena
    ;
    ;
    Clasing, Robert
    ;
    Arumí, José
    In Chile in recent years, changes in precipitation and temperatures have been reported that could affect water resource management and planning. One way of facing these changes is studying and understanding the behavior of hydrological processes at a regional scale and their different temporal scales. Therefore, the objective of this study is to analyze the importance of the hydrological processes of the HBV model at different temporal scales and for different hydrological regimes. To this end, 88 watersheds located in south-central Chile were analyzed using time-varying sensitivity analysis at five different temporal scales (1 month, 3 months, 6 months, 1 year, and 5 years). The results show that the model detects the temporality of the most important hydrological processes. In watersheds with a pluvial regime, the greater the temporal scale, the greater the importance of soil water accumulation processes and the lower the importance of surface runoff processes. By contrast, in watersheds with a nival regime, at greater temporal scales, groundwater accumulation and release processes take on greater importance, and soil water release processes are less important.
  • Publication
    Unraveling complex hydrogeological processes in Andean basins in south‐central Chile: An integrated assessment to understand hydrological dissimilarity
    (Wiley, 2016) ;
    Arumí, José
    ;
    Wagener, Thorsten
    ;
    Oyarzún, Ricardo
    ;
    Parra, Victor
    Groundwater storage, drainage, and interbasin water exchange are common hydrological processes but often difficult to quantify due to a lack of local observations. We present a study of three volcanic mountainous watersheds located in south‐central Chile (~36.9 ° S) in the Chillán volcanic complex (Chillán, Renegado, and Diguillín river basins). These are neighboring basins that are similar with respect to the metrics normally available for characterization everywhere (e.g., precipitation, temperature, and land cover). In a hydrological sense, similar (proportional) behavior would be expected if these catchments would be characterized with this general information. However, these watersheds show dissimilar behavior when analyzed in detail. The surface water balance does not fit for any of these watersheds individually; however, the water balance of the whole system can be explained by likely interbasin water exchanges. The Renegado river basin has an average annual runoff per unit of area on the order of 60–65% less than those of the Diguillín and Chillán rivers, which is contradictory to the hydrological similarity among the basins. To understand the main processes that control streamflow generation, two analyses were performed: (a) basin metrics (land cover, geologic, topographic, and climatological maps) and hydro‐meteorological data analyses and (b) a water balance model approach. The analyses contribute to a plausible explanation for the hydrogeological processes in the system. The soils, topography, and geology of the Chillán–Renegado–Diguillín system favor the infiltration and groundwater movements from the Renegado river basin, mainly to the neighboring Diguillín basin. The interbasin water exchanges affect hydrological similarity and explain the differences observed in the hydrological processes of these three apparently similar volcanic basins. The results highlight the complexity of hydrological processes in volcanic mountainous systems and suggest that a simple watershed classification approach based on widely available data is insufficient. Simple local analyses such as specific flow analysis with a review of the geology and morphology can contribute to a better understanding of the hydrology of volcanic mountainous areas.