Options
Dr. Aránguiz-Muñoz, Rafael
Nombre de publicación
Dr. Aránguiz-Muñoz, Rafael
Nombre completo
Aránguiz Muñoz, Rafael Enrique
Facultad
Email
raranguiz@ucsc.cl
ORCID
31 results
Research Outputs
Now showing 1 - 10 of 31
- PublicationTsunami inundation limit based on probabilistic analysis of runup and inundation distanceTsunamis are devastating natural hazards that can reach runups of 30 m in coastal areas. One of the most important mitigation measures to save human lives is evacuation, which requires identification of both the inundation area and safe zones. Currently, a ground elevation of 30 m is used to determine safe zones in Chile. However, it has also been used for urban planning, for which the actual tsunami hazard may be overestimated. This research aims to propose a criterion based on probabilistic analysis to determine the tsunami inundation limit, considering both the runup and inundation distance from the shoreline. To this end, a synthetic database of runup and inundation distance from the shoreline was analyzed. First, stochastic earthquake sources were used to simulate tsunami events up to an inundation level in 10 coastal cities. Second, maximum runup and inundation distance were calculated for each tsunami scenario along transect lines perpendicular to the coastline. Finally, three exceedance probabilities of runup – 0.5%, 1%, and 2% in 50 years – were calculated to estimate the runup and inundation distances for each city. The results showed that geomorphology has an important role in runup and inundation distance. In addition, this research introduced new criteria for inundation limit identification, which are more flexible and accurate than the current 30-m ground elevation criterion used for tsunami risk assessment and urban planning. The application of this proposed method would allow local authorities to improve the locations of both critical infrastructure and safe zones.
- PublicationA new generation of tsunami inundation maps of Chilean cities: Tsunami source database and probabilistic hazard analysis(Taylor & Francis, 2024)
; ;Ramos, Marilym ;Sepúlveda, IgnacioVillagra, PaulaTsunami inundation maps are crucial for understanding the impact of tsunamis and planning mitigation measures. Our research focuses on creating a database of stochastic tsunami scenarios along the Chilean subduction zone and probabilistic inundation maps for 11 coastal cities. We divided the Chile-Perú subduction zone into four seismic segments based on historical seismicity. Stochastic rupture scenarios, ranging from 8.0 to 9.6 magnitudes, were generated using the Karhunen-Loeve expansion. The Stochastic Reduced Order Model (SROM) helped select representative tsunami scenarios for each segment and magnitude bin. We then used the NEOWAVE model to simulate these scenarios to an inundation level, creating probabilistic tsunami maps for various return periods. Our findings reveal that local geography significantly influences tsunami inundation, with some areas facing high inundation risks while others experience minimal impacts. As a result, a uniform planning and design criterion across the entire country is not advisable; site-specific studies are necessary. These probabilistic scenarios can provide tailored solutions for different Chilean coastal cities, enhancing their resilience. Additionally, this research marks the first comprehensive probabilistic tsunami hazard analysis for the Chilean coast, considering multiple seismic sources, marking a crucial step toward full tsunami risk assessment for coastal communities. - PublicationVulnerability of physical infrastructure network components to damage from the 2015 Illapel Tsunami, Coquimbo, ChileThis study assesses physical infrastructure vulnerability for infrastructure network components exposed during the 2015 Illapel tsunami in Coquimbo, Chile. We analyse road and utility pole vulnerability to damage, based on interpolated and simulated tsunami hazard intensity (flow depth, flow velocity, hydrodynamic force and momentum flux) and network component characteristics. A Random Forest Model and Spearman’s Rank correlation test are applied to analyse variable importance and monotonic relationships, with respect to damage, between tsunami hazards and network component attributes. These models and tests reveal that flow depth correlates higher with damage, relative to flow velocity, hydrodynamic force and momentum flux. Scour (for roads and utility poles) and debris strikes (for utility poles) are strongly correlated with damage. A cumulative link model methodology is used to fit fragility curves. These fragility curves reveal that, in response to flow depth, Coquimbo roads have higher vulnerability than those analysed in previous tsunami event studies, while utility poles demonstrate lower vulnerability than with previous studies. Although we identify tsunami flow depth as the most important hydrodynamic hazard intensity metric, for causing road and utility pole damage, multiple characteristics correlate with damage and should also be considered when classifying infrastructure damage levels.
- PublicationAnalysis of the cascading rainfall-landslide-tsunami event of June 29th, 2022, Todos los Santos Lake, Chile(Landslides, 2023)
; ; ;Espinoz, Mauricio ;Gómez, Matías ;Maldonado, Felipe ;Sepúlveda, Violchen ;Rogel, Iván ;Oyarzun, Juan CarlosDuhart, PaulA cascading rainfall–landslide–tsunami event occurred on June 29th, 2022, in Todos los Santos Lake, located in southern Chile, affecting the tourist town of Petrohué. The event took place after several days of heavy rain during an extratropical cyclone. Important data were collected during a field survey, including hillslope 3D scans, lake–river bathymetry, orthomosaic photos, and an assessment of damage to public infrastructure. The analysis showed that the landslide had an estimated length, width, and depth of 175 m, 40 m, and 1.5 m, respectively, which resulted in a total volume of 10,500 m3. The underwater runout distance of the landslide was estimated at 40 m, with a final water depth of 12 m. The initial tsunami wave was observed to be ~1 m, and since the distance from the landslide to the town was ~500 m, an arrival time of ~1 min was observed. Despite the small tsunami amplitudes, the pedestrian bridge of the floating pontoon collapsed due to the flow current and vertical oscillations. The results of the numerical simulation of the tsunami supported the observed data. They showed that the impact of the tsunami was only in the near field and was influenced by the bathymetry, such that refraction and edge waves were observed. The landslide occurred in an area where previous debris flows took place in 2013 and 2015. The main finding of the present research is that the occurrences of this and previous landslides were controlled by the presence of the Liquiñe–Ofqui fault zone, which generates broad areas of structural damage, with mechanical and chemical weathering significantly reducing rock strength. These observations provide a warning regarding the susceptibility of similar regions to other trigger events such as earthquakes and rainfall. This recent landslide highlights the need for a more comprehensive hazard assessment, for which probabilistic analysis could be focused on large active strike-slip fault systems. It also highlights the importance of community awareness, particularly in areas where tourism and real estate speculation have significantly increased urban development. - PublicationLand cover and potential for tsunami evacuation in rapidly growing urban areas. The case of Boca Sur (San Pedro de la Paz, Chile)(International Journal of Disaster Risk Reduction, 2022)
;Qüense, Jorge ;Martínez, Carolina ;León, Jorge; ;Inzunza, Simón ;Guerrero, Nikole ;Chamorro, AlondraBonet, MalcomThe destructive potential of a massive tsunami is not only related to society’s response capacity and evacuation plans, but also to the urban morphology and land cover. The Boca Sur neigh- borhood is one of the areas in central Chile that is most exposed to tsunamis, and it is framed in the context of increasing urban growth. Faced with the worst tsunami scenario (earthquake Mw = 9.0), residents’ evacuation potential is analyzed by using a least-cost-distance model, and two scenarios of land cover change are considered (2002 and 2018). Presently, the sector’s urban areas have grown by 83%, therefore its population has also grown. The evacuation times consider an average walking speed (1.22 m/s) for both years (2002 and 2018). This analysis establishes that over 40% of the study area is more than 60 min away from the safe zones established by authorities. This differs greatly from the 22-min average tsunami arrival time. Moreover, 19% of the area could not be evacuated in less than 30 min. Therefore, it can be concluded that the increased urbanization in the coastal area has not improved travel times, as urban planning did not consider the optimization of evacuation times to the designated safe zones. In this study, we propose new safe zones that would help reducing evacuation times to 30 min. In addition to the area’s high tsunami risk, the evacuated population’s strong travel time limitations are added, prioritizing the incorporation of social and urban resilience elements that help to effectively reduce the risk of disaster, by using land-use planning and community work. - PublicationThe role of physical parameterization schemes in capturing the characteristics of extratropical cyclones over the South Pacific OceanThe extratropical cyclone (ETC) of August 2015 in central Chile was investigated using the WRF model to analyze the sensitivity of meteorological variables to different physical parameterization schemes. This study assesses the performance of different physical schemes in the simulation of track, core pressure, mean sea level pressure, wind direction and wind speed associated with ETC over the South Pacific. The analysis uses a total of 36 sensitivity experiments, consisting of: two microphysics schemes; three surface layer and planetary boundary layer; two cumulus schemes; two longwave and shortwave radiation; and Noah for land surface. Sensitivity experiments indicate that the cumulus, planetary boundary layer and surface layer scheme have a fundamental role in the characterization of ETC track and intensity, while the microphysics scheme plays a secondary role in determining these variables. On the other hand, long‐ and shortwave radiation do not have a significant impact. The sensitivity experiments indicate that exp24 provides the best results overall. The results of this work allow the selection time of the different physical schemes to be optimized according to the ETC characteristics that are to be simulated.
- PublicationTsunami detection by GPS-derived ionospheric total electron content(Scientific Reports, 2021)
;Shrivastava, Mahesh ;Maurya, Ajeet ;Gonzalez, Gabriel ;Sunil, Poikayil ;Gonzalez, Juan ;Salazar, PabloTo unravel the relationship between earthquake and tsunami using ionospheric total electron content (TEC) changes, we analyzed two Chilean tsunamigenic subduction earthquakes: the 2014 Pisagua Mw 8.1 and the 2015 Illapel Mw 8.3. During the Pisagua earthquake, the TEC changes were detected at the GPS sites located to the north and south of the earthquake epicenter, whereas during the Illapel earthquake, we registered the changes only in the northward direction. Tide-gauge sites mimicked the propagation direction of tsunami waves similar to the TEC change pattern during both earthquakes. The TEC changes were represented by three signals. The initial weaker signal correlated well with Acoustic Rayleigh wave (AWRayleigh), while the following stronger perturbation was interpreted to be caused by Acoustic Gravity wave (AGWepi) and Internal Gravity wave (IGWtsuna) induced by earthquakes and subsequent tsunamis respectively. Inevitably, TEC changes can be utilized to evaluate earthquake occurrence and tsunami propagation within a framework of multi-parameter early warning systems. - PublicationThe AD1835 eruption at Robinson Crusoe Island discredited: Geological and historical evidence(Sage Journals, 2021)
; ;Lara, Luis ;Moreno, Rodrigo ;Valdivia, ValentinaLagos, MarceloA submarine eruption in Cumberland Bay, Robinson Crusoe Island, was reported by Thomas Sutcliffe, the former British Governor, shortly after the earthquake that struck the coast of Chile on 20 February 1835. This episode was described by Charles Darwin in his Voyage of the Beagle and extensive mention has been made since then, especially stimulated by a renowned painting by J.M. Rugendas. Because of the apparent causal relation, this event has also been widely cited as an example of remote tectonically triggered eruption. However, there are inconsistencies that pose doubts about the actual occurrence of an eruption. Here we present evidence against the hypothetical eruption based on both the absence of any geological evidence and a reinterpretation of the historical accounts. We first observe that no bathymetric anomaly is present immediately below the place of the depicted ‘eruptive column’. We also note the absence of any deposit or recent volcano morphology and then unravel some incompatibility between the expected volcanological parameters and the featured column. In addition, we analyse the historical records and conclude that they are compatible with a tsunami entering the bay. By means of numerical simulations we further demonstrate that the accounts well match with the expected behaviour of a distant earthquake-triggered tsunami. We infer that some tsunami-related processes (sound waves, rockfalls, lightning) may have been misunderstood at that time. The latter corresponds to the current knowledge of natural processes but also could have been deliberatively amplified in Sutcliffe’s report. Our multidisciplinary approach provides full consistent geographical evidence of a fact that did not happen. This finding is relevant from the hazard’s perspective, but also for the science of earthquakes and eruptions, or the knowledge of processes that control the late secondary volcanism at oceanic islands and seamounts. - PublicationEx post analysis of engineered tsunami mitigation measures in the town of Dichato, Chile(Springer Nature, 2020)
; ;Oportus, Maximiliano ;Cienfuegos, Rodrigo ;Urrutia, Alejandro ;Catalán, PatricioHube, MatíasDue to Chile’s notorious and frequent seismic activity, earthquake- and tsunami-related studies have become a priority in the interest of developing effective countermeasures to mitigate their impacts and to improve the country’s resilience. Mitigation measures are key to accomplish these objectives. Therefore, this investigation adopts a tsunami damage assessment framework to evaluate the direct benefits of tsunami mitigation works implemented by the Chilean government in the town of Dichato in the aftermath of the 2010 tsunami. We perform an ex post analysis of the potential damage reduction produced by these works studying what would have been the consequences on the built environment if they were in place for the tsunami that hit this area after the Maule earthquake in February 27, 2010. We use state-of-the-art tsunami simulation models at high resolution to assess the reduction in tsunami intensity measures, which serve as input to evaluate the benefit from averted damage against the costs of the mitigation measures. The obtained results show a reduction in the flooded area and a delay in the arrival times for the first smaller tsunami waves, but a negligible damage reduction when confronted to the largest waves. In conclusion, the tsunami mitigation measures would not have been effective to reduce the impact of the tsunami generated by the Maule earthquake in the town of Dichato, but could have had a benefit in retarding the inundation of low-land areas for the first smaller tsunami waves. The latter suggests that these works might be useful to mitigate storm waves or tsunamis of much smaller scales than the one that hit central-south Chile in 2010. - PublicationThe 2018 Sulawesi tsunami in Palu city as a result of several landslides and coseismic tsunamis(Taylor & Francis, 2020)
; ;Esteban, Miguel ;Takagi, Hiroshi ;Mikami, Takahito ;Takabatake, Tomoyuki ;Gómez, Matías ;González, Juan ;Shibayama, Tomoya ;Okuwaki, Ryo ;Yagi, Yuji ;Shimizu, Kousuke ;Achiari, Hendra ;Stolle, Jacob ;Robertson, Ian ;Ohira, Koichiro ;Nakamura, Ryota ;Nishida, Yuta ;Krautwald, Clemens ;Goseberg, NilsNistor, IoanThe September 28 2018 Palu tsunami surprised the scientific community, as neither the earthquake magnitude nor its strike-slip mechanism were deemed capable of producing the wave heights that were observed. However, recent research has shown that the earthquake generated several landslides inside Palu bay. The authors conducted a post-disaster field survey of the area affected to collect spatial data on tsunami inundation heights, nearshore and bay bathymetry, and carried out eyewitness interviews to collect testimonies of the event. In addition, numerical simulations of the tsunami generation and propagation mechanisms were carried out and validated with the inferred time series. Seven small submarine landslides were identified along the western shore of the bay, and one large one was reported on the eastern shore of Palu City. Most of these landslides occurred at river mouths and reclamation areas, where soft submarine sediments had accumulated. The numerical simulations support a scenario in which the tsunami waves that arrived at Palu city 4–10 min after the earthquake were caused by the co-seismic seafloor deformation, possibly coupled with secondary waves generated from several submarine landslides. These findings suggest that more comprehensive methodologies and tools need to be used when assessing probabilistic tsunami hazards in narrow bays.