Options
Dr. Aranguiz-Muñoz, Rafael
Nombre de publicación
Dr. Aranguiz-Muñoz, Rafael
Nombre completo
Aranguiz Muñoz, Rafael Enrique
Facultad
Email
raranguiz@ucsc.cl
ORCID
7 results
Research Outputs
Now showing 1 - 7 of 7
- PublicationAssessment of social perception on the contribution of hard-infrastructure for tsunami mitigation to coastal community resilience after the 2010 tsunami: Greater Concepcion area, Chile(International journal of disaster risk reduction, 2015)
; ;Yu Ting, Joanne ;Pawel-Jarzebski, Marcin ;Dyah, Fatma ;San Carlos, Ricardo ;Jianping, Gu ;Esteban, MiguelTomohiro, AkiyamaA GIS analysis on the urbanization spread (1725 to present) in the Greater Concepcion Region demonstrates that increasing the tsunami disaster resilience of coastal communities is a pressing issue in Chile, due to the continuous presence of human settlements in tsunami-prone areas. This research assesses the contribution of “hard-infrastructure” for increasing disaster resilience within five coastal towns (Dichato, Coliumo, Tumbes, Penco and Talcahuano). Structures were considered beneficial to resilience-building if they had multi-functional properties which aided in the social and/or economic recovery of the affected community. The assessment was carried out through in-depth interviews with local inhabitants until the point of data-saturation. Results reveal that all surveyed coastal towns had hard-infrastructure that was built after 2010, in the form of promenades and elevated housing. The former structures contributed positively to building economic resilience in Dichato, Talchuano and Penco, through the promotion of tourism and small-scale fishing activities. However, the physical design of the elevated houses was found to only facilitate recovery of community economic functions in Tumbes, while causing strain on the social fabric and possibly hindering tsunami evacuation in all other study sites. The mixed contribution of hard-infrastructure to coastal resilience highlights the need for the de-centralization of planning and reconstruction processes for a successful contextualization of the issue. - PublicationField Survey of the 2018 Sulawesi Tsunami: Inundation and Run-up Heights and Damage to Coastal Communities(Pure and Applied Geophysics, 2019)
;Mikami, Takahito ;Shmayama, Tomoya ;Esteban, Miguel ;Takabatake, Tomoyuki ;Nakamura, Ryota ;Nishida, Yuta ;Achiari, Hendra ;Rusli ;Marzuki, Abdul Gafur ;Marzuki, Muhammad Fadel Hidayat ;Stolle, Jacob ;Krautwald, Clemens ;Robertson, Ian; Ohira, KoichiroOn September 28, 2018, a large earthquake and its accompanying tsunami waves caused severe damage to the coastal area of Palu Bay, in the central western part of Sulawesi Island, Indonesia. To clarify the distribution of tsunami inundation and run-up heights, and damage to coastal communities due to the tsunami, the authors conducted a field survey 1 month after the event. In the inner part of Palu Bay tsunami inundation and run-up heights of more than 4 m were measured at many locations, and severe damage by the tsunami to coastal low-lying settlements was observed. In the areas to the north of the bay and around its entrance the tsunami inundation and run-up heights were lower than in the inner part of the bay. The tsunami inundation distance depended on the topographical features of coastal areas. The southern shore of the bay experienced a longer inundation distance than other shores, though generally severe damage to houses was limited to within around 200 m from the shoreline. The main lessons that can be learnt from the present event are also discussed. - PublicationA new generation of tsunami inundation maps of Chilean cities: Tsunami source database and probabilistic hazard analysis(Taylor & Francis, 2024)
; ;Ramos, Marilym ;Sepúlveda, IgnacioVillagra, PaulaTsunami inundation maps are crucial for understanding the impact of tsunamis and planning mitigation measures. Our research focuses on creating a database of stochastic tsunami scenarios along the Chilean subduction zone and probabilistic inundation maps for 11 coastal cities. We divided the Chile-Perú subduction zone into four seismic segments based on historical seismicity. Stochastic rupture scenarios, ranging from 8.0 to 9.6 magnitudes, were generated using the Karhunen-Loeve expansion. The Stochastic Reduced Order Model (SROM) helped select representative tsunami scenarios for each segment and magnitude bin. We then used the NEOWAVE model to simulate these scenarios to an inundation level, creating probabilistic tsunami maps for various return periods. Our findings reveal that local geography significantly influences tsunami inundation, with some areas facing high inundation risks while others experience minimal impacts. As a result, a uniform planning and design criterion across the entire country is not advisable; site-specific studies are necessary. These probabilistic scenarios can provide tailored solutions for different Chilean coastal cities, enhancing their resilience. Additionally, this research marks the first comprehensive probabilistic tsunami hazard analysis for the Chilean coast, considering multiple seismic sources, marking a crucial step toward full tsunami risk assessment for coastal communities. - PublicationWhat can we do to forecast tsunami hazards in the near field given large epistemic uncertainty in rapid seismic source inversions?(American Geophysical Union (AGU), 2018)
;Cienfuegos, Rodrigo ;Catalán, Patricio A. ;Urrutia, Alejandro ;Benavente, Roberto; González, GabrielThe variability in obtaining estimates of tsunami inundation and runup on a near‐real‐time tsunami hazard assessment setting is evaluated. To this end, 19 different source models of the Maule Earthquake were considered as if they represented the best available knowledge an early tsunami warning system could consider. Results show that large variability can be observed in both coseismic deformation and tsunami variables such as inundated area and maximum runup. This suggests that using single source model solutions might not be appropriate unless categorical thresholds are used. Nevertheless, the tsunami forecast obtained from aggregating all source models is in good agreement with observed quantities, suggesting that the development of seismic source inversion techniques in a Bayesian framework or generating stochastic finite fault models from a reference inversion solution could be a viable way of dealing with epistemic uncertainties in the framework of nearly‐real‐time tsunami hazard mapping. - PublicationThe 16 September 2015 Chile tsunami from the post-tsunami survey and numerical modeling perspectives(Springer Nature, 2016)
; ;González, Gabriel ;González, Juan ;Catalán, Patricio ;Cienfuegos, Rodrigo ;Yagi, Yuji ;Okuwaki, Ryo ;Urra, Luisa ;Contreras, Karla ;Del Rio, IanRojas, CamiloOn September 16, 2015 a magnitude Mw 8.3 earthquake took place off the coast of the Coquimbo Region, Chile. Three tsunami survey teams covered approximately 700 km of the Pacific coast. The teams surveyed the area, recording 83 tsunami flow depth and runup measurements. The maximum runup was found to be 10.8 m at only one small bay, in front of the inferred tsunami source area. However, it was observed that runup in other locations rarely exceed 6 m. Tsunami runup was larger than those of the 2014 Pisagua event, despite the similar earthquake magnitude. Moreover, tsunami arrival times were found to be shorter than those of previous tsunamis along the Chilean subduction zone. Numerical simulations of the tsunami event showed a good agreement with field data, highlighting that tsunami arrival time and the spatial variation of the tsunami amplitudes were strongly influenced by the bathymetry, coastal morphology and the slip distribution of the causative earthquake. - PublicationAn improvement of tsunami hazard analysis in Central Chile based on stochastic rupture scenarios(Coastal Engineering Journal, 2020)
; ; ;Becerra, IgnacioGonzález, JuanCentral Chile is exposed to tsunami hazard, and large earthquakes and tsunamis have occurred over the last 500 years. Tsunami hazard analysis in Chile has been traditionally implemented by means of a deterministic approach, which is based on historical events and uniform slip distribution. The objective of the present study is to improve tsunami hazard analysis in central Chile (30°S to 38°S). To encompass the purpose, stochastic earthquake scenarios of magnitude Mw 8.8 to 9.2 were generated. Two different sets of stochastic tsunami scenarios were selected by means of the Stochastic Reduced Order Model (SROM), which were applied to Quintero bay to perform a Probabilistic Tsunami Hazard Analysis (PTHA). The results showed that PTHA of Quintero bay from stochastic tsunami scenarios agrees with paleotsunami records in the bay, while a deterministic tsunami scenario underestimated the hazard. Two sets (50 and 100 scenarios, respectively) give similar results when smaller return periods are analyzed. However, for larger return periods (Unknown node type: font 2000 yr) the set of 100 scenarios show better results consistent with previous paleoseismological findings. The methodology implemented here can be replicated in other seismic regions in Chile as well as in other active subduction zones, thus, both near field and far field events can be analyzed. - PublicationTsunami awareness and evacuation behaviour during the 2018 Sulawesi earthquake tsunami(International Journal of Disaster Risk Reduction, 2020)
;Shafiyya Harnantyari, Anisa ;Takabatake, Tomoyuki ;Esteban, Miguel ;Valenzuela, Paolo ;Nishida, Yuta ;Shibayama, Tomoya ;Achiari, Hendra ;Rusli ;Marzuki, Abdul Gafur ;Marzuki, Muhammad Fadel Hidayat; Kyaw, Thit OoOn September 28, 2018 significant tsunami waves, which are considered to have been generated by submarine landslides, struck the shorelines of Central Sulawesi, Indonesia. One month after the event, the authors conducted a questionnaire survey of the affected areas (Donggala Regency and Palu City) to collect information on the evacuation behaviour and tsunami awareness of local residents. In the present study, in addition to summarising the overall trend of the survey results using descriptive statistics, a chi-squared test was applied to analyse the significance of the relationship between tsunami awareness and evacuation behaviour and the demographic characteristics of respondents. The analysis of the results demonstrates that although the respondents generally have a high level of tsunami awareness, younger people and Donggala Regency residents have an overall lower understanding of the phenomenon. It was also found that 82.5% of the population evacuated after witnessing others evacuating during the event. As there was no official warning to residents before the arrival of the tsunami, this social trigger played a significant role in prompting evacuation and decreasing the number of casualties. The present study also revealed that many people faced congestion while evacuating (especially in Palu City). This highlights the need to introduce additional tsunami disaster mitigation strategies to ensure that all residents can swiftly evacuate during such incidents.