Research Outputs

Now showing 1 - 10 of 10
  • Thumbnail Image
    Publication
    Three-dimensional non-relativistic supergravity and torsion
    (European Physical Journal C, 2022) ; ;
    Ravera, Lucrezia
    In this paper we present a torsional non-relativi-stic Chern–Simons (super)gravity theory in three spacetime dimensions. We start by developing the non-relativistic limit of the purely bosonic relativistic teleparallel Chern–Simons formulation of gravity. On-shell the latter yields a non-Riemannian setup with non-vanishing torsion, which, at non-relativistic level, translates into a non-vanishing spatial torsion sourced by the cosmological constant. Then we consider the three-dimensional relativistic N= 2 teleparallel Chern–Simons supergravity theory and obtain its non-relativistic counterpart by exploiting a Lie algebra expansion method. The non-relativistic supergravity theory is characterized, on-shell, by a non-vanishing spatial super-torsion, again sourced by the cosmological constant.
  • Thumbnail Image
    Publication
    Extended kinematical 3D gravity theories
    (Springer Nature, 2024) ; ;
    Pino, Daniel
    ;
    Ravera, Lucrezia
    In this work, we classify all extended and generalized kinematical Lie algebras that can be obtained by expanding the so (2, 2) algebra. We show that the Lie algebra expansion method based on semigroups reproduces not only the original kinematical algebras but also a family of non- and ultra-relativistic algebras. Remarkably, the extended kinematical algebras obtained as sequential expansions of the AdS algebra are characterized by a non-degenerate bilinear invariant form, ensuring the construction of a well-defned Chern-Simons gravity action in three spacetime dimensions. Contrary to the contraction process, the degeneracy of the non-Lorentzian theories is avoided without extending the relativistic algebra but considering a bigger semigroup. Using the properties of the expansion procedure, we show that our construction also applies at the level of the Chern-Simons action.
  • Thumbnail Image
    Publication
    Three-dimensional non-relativistic extended supergravity with cosmological constant
    (Springer Nature, 2020) ; ;
    Ravera, Lucrezia
    In this paper, we present two novel non-relativistic superalgebras which correspond to supersymmetric extensions of the enlarged extended Bargmann algebra. The three-dimensional non-relativistic Chern–Simons supergravity actions invariant under the aforementioned superalgebras are constructed. The new non-relativistic superalgebras allow to accommodate a cosmological constant in a non-relativistic supergravity theory. Interestingly, we show that one of the non-relativistic supergravity theories presented here leads to the recently introduced Maxwellian exotic Bargmann supergravity when the flat limit → ∞ is considered. Besides, we show that both descriptions can be written in terms of a supersymmetric extension of the Nappi–Witten algebra or the extended Newton–Hooke superalgebra.
  • Thumbnail Image
    Publication
    On the supersymmetry invariance of flat supergravity with boundary
    (Springer Nature, 2019) ;
    Concha, Patrick
    ;
    Ravera, Lucrezia
    The supersymmetry invariance of flat supergravity (i.e., supergravity in the absence of any internal scale in the Lagrangian) in four dimensions on a manifold with non-trivial boundary is explored. Using a geometric approach we find that the supersymmetry invariance of the Lagrangian requires to add appropriate boundary terms. This is achieved by considering additional gauge fields to the boundary without modifying the bulk Lagrangian. We also construct an enlarged supergravity model from which, in the vanishing cosmological constant limit, flat supergravity with a non-trivial boundary emerges properly.
  • Publication
    Three-dimensional Maxwellian extended Bargmann supergravity
    We present a novel three-dimensional non-relativistic Chern-Simons supergravity theory invariant under a Maxwellian extended Bargmann superalgebra. We first study the non-relativistic limits of the minimal and the N = 2 Maxwell superalgebras. We show that a well-defined Maxwellian extended Bargmann supergravity requires to construct by hand a supersymmetric extension of the Maxwellian extended Bargmann algebra by introducing additional fermionic and bosonic generators. The new non-relativistic supergravity action presented here contains the extended Bargmann supergravity as a sub-case.
  • Thumbnail Image
    Publication
    Three-dimensional Maxwellian Carroll gravity theory and the cosmological constant
    (Elsevier, 2021) ; ;
    Peñafiel, Diego
    ;
    Ravera, Lucrezia
    In this work, we present the three-dimensional Maxwell Carroll gravity by considering the ultra-relativistic limit of the Maxwell Chern-Simons gravity theory defined in three spacetime dimensions. We show that an extension of the Maxwellian Carroll symmetry is necessary in order for the invariant tensor of the ultra-relativistic Maxwellian algebra to be non-degenerate. Consequently, we discuss the origin of the aforementioned algebra and theory as a flat limit. We show that the theoretical setup with cosmological constant yielding the extended Maxwellian Carroll Chern-Simons gravity in the vanishing cosmological constant limit is based on a new enlarged extended version of the Carroll symmetry. Indeed, the latter exhibits a non-degenerate invariant tensor allowing the proper construction of a Chern-Simons gravity theory which reproduces the extended Maxwellian Carroll gravity in the flat limit.
  • Thumbnail Image
    Publication
    Three-dimensional Maxwellian extended Newtonian gravity and flat limit
    (Springer Nature, 2020) ; ;
    Rubio-González, Gustavo
    ;
    Ravera, Lucrezia
    In the present work we find novel Newtonian gravity models in three space-time dimensions. We first present a Maxwellian version of the extended Newtonian gravity, which is obtained as the non-relativistic limit of a particular U(1)-enlargement of an enhanced Maxwell Chern-Simons gravity. We show that the extended Newtonian gravity appears as a particular sub-case. Then, the introduction of a cosmological constant to the Maxwellian extended Newtonian theory is also explored. To this purpose, we consider the non-relativistic limit of an enlarged symmetry. An alternative method to obtain our results is presented by applying the semigroup expansion method to the enhanced Nappi-Witten algebra. The advantages of considering the Lie algebra expansion procedure is also discussed.
  • Thumbnail Image
    Publication
    Three-dimensional exotic Newtonian supergravity theory with cosmological constant
    (Springer Nature, 2021) ; ;
    Ravera, Lucrezia
    We present a supersymmetric extension of the exotic Newtonian Chern–Simons gravity theory in three spacetime dimensions. The underlying new non-relativistic superalgebra is obtained by expanding the N = 2 AdS superalgebra and can be written as two copies of the enhanced Nappi–Witten algebra, one of which is augmented by supersymmetry. We show that the exotic Newtonian superalgebra allows to introduce a cosmological constant to the extended Newtonian supergravity. Interestingly, the obtained supergravity action contains the extended Newton–Hooke supergravity as a sub-case.
  • Thumbnail Image
    Publication
    Non-relativistic three-dimensional supergravity theories and semigroup expansion method
    (Springer Nature, 2021) ; ;
    Ipinza, Marcelo
    ;
    Ravera, Lucrezia
    In this work we present an alternative method to construct diverse non-relativistic Chern-Simons supergravity theories in three spacetime dimensions. To this end, we apply the Lie algebra expansion method based on semigroups to a supersymmetric extension of the Nappi-Witten algebra. Two different families of non-relativistic superalgebras are obtained, corresponding to generalizations of the extended Bargmann superalgebra and extended Newton-Hooke superalgebra, respectively. The expansion method considered here allows to obtain known and new non-relativistic supergravity models in a systematic way. In particular, it immediately provides an invariant tensor for the expanded superalgebra, which is essential to construct the corresponding Chern-Simons supergravity action. We show that the extended Bargmann supergravity and its Maxwellian generalization appear as particular subcases of a generalized extended Bargmann supergravity theory. In addition, we demonstrate that the generalized extended Bargmann and generalized extended Newton-Hooke supergravity families are related through a contraction process.
  • Thumbnail Image
    Publication
    Three-dimensional exotic Newtonian gravity with cosmological constant
    In this work we introduce a cosmological constant in the extended Newtonian gravity theory. To this end, we extend the exotic Newton-Hooke algebra by introducing new generators and central charges. The new algebra obtained here has been denoted as exotic Newtonian algebra and reproduces the extended Newtonian one in the flat limit → ∞. A three-dimensional Chern-Simons action for the exotic Newtonian algebra is presented. We show that the non-relativistic gravity theory proposed here reproduces the most general extended Newtonian gravity theory in the flat limit.