Options
Dra. Rodríguez-Durán, Evelyn
Nombre de publicación
Dra. Rodríguez-Durán, Evelyn
Nombre completo
Rodríguez Durán, Evelyn Karina
Facultad
Email
erodriguez@ucsc.cl
ORCID
4 results
Research Outputs
Now showing 1 - 4 of 4
- PublicationAsymptotic symmetries of three-dimensional Chern-Simons gravity for the Maxwell algebra(Springer Nature, 2018)
; ;Concha, Patrick ;Merino, Nelson ;Miskovic, Olivera ;Salgado-Rebolledo, PatricioValdivia, OmarWe study a three-dimensional Chern-Simons gravity theory based on the Maxwell algebra. We find that the boundary dynamics is described by an enlargement and deformation of the bms3 algebra with three independent central charges. This symmetry arises from a gravity action invariant under the local Maxwell group and is characterized by presence of Abelian generators which modify the commutation relations of the supertranslations in the standard bms3 algebra. Our analysis is based on the charge algebra of the theory in the BMS gauge, which includes the known solutions of standard asymptotically flat case. The field content of the theory is different than the one of General Relativity, but it includes all its geometries as particular solutions. In this line, we also study the stationary solutions of the theory in ADM form and we show that the vacuum energy and the vacuum angular momentum of the stationary configuration are influenced by the presence of the gravitational Maxwell field. - PublicationGeneralized Chern–Simons higher-spin gravity theories in three dimensions(Elsevier, 2018)
; ;Caroca, Ricardo ;Concha, Patrick ;Fierro, OctavioSalgado-Rebolledo, PatricioThe coupling of spin-3 gauge fields to three-dimensional Maxwell and AdS-Lorentz gravity theories is presented. After showing how the usual spin-3 extensions of the AdS and the Poincaré algebras in three dimensions can be obtained as expansions of sl(3,R) algebra, the procedure is generalized so as to define new higher-spin symmetries. Remarkably, the spin-3 extension of the Maxwell symmetry allows one to introduce a novel gravity model coupled to higher-spin topological matter with vanishing cosmological constant, which in turn corresponds to a flat limit of the AdS-Lorentz case. We extend our results to define two different families of higher-spin extensions of three-dimensional Einstein gravity. - PublicationSemi-simple enlargement of the bms3 algebra from a so(2, 2) ⊕ so(2, 1) Chern-Simons theory(Springer Nature, 2019)
; ;Concha, Patrick ;Merino, Nelson ;Salgado-Rebolledo, PatricioValdivia, OmarIn this work we present a BMS-like ansatz for a Chern-Simons theory based on the semi-simple enlargement of the Poincaré symmetry, also known as AdS-Lorentz algebra. We start by showing that this ansatz is general enough to contain all the relevant stationary solutions of this theory and provides with suitable boundary conditions for the corresponding gauge connection. We find an explicit realization of the asymptotic symmetry at null infinity, which defines a semi-simple enlargement of the bms3 algebra and turns out to be isomorphic to three copies of the Virasoro algebra. The flat limit of the theory is discussed at the level of the action, field equations, solutions and asymptotic symmetry. - PublicationGeneralizing the bms3 and 2D-conformal algebras by expanding the Virasoro algebra(Springer, 2018)
; ;Caroca, Ricardo ;Concha Aguilera, PatrickSalgado-Rebolledo, PatricioBy means of the Lie algebra expansion method, the centrally extended conformal algebra in two dimensions and the bms3 algebra are obtained from the Virasoro algebra. We extend this result to construct new families of expanded Virasoro algebras that turn out to be infinite-dimensional lifts of the so-called Bk, Ck and Dk algebras recently introduced in the literature in the context of (super)gravity. We also show how some of these new infinite-dimensional symmetries can be obtained from expanded Kač–Moody algebras using modified Sugawara constructions. Applications in the context of three-dimensional gravity are briefly discussed.