Options
Dra. Rodríguez-Durán, Evelyn
Nombre de publicación
Dra. Rodríguez-Durán, Evelyn
Nombre completo
Rodríguez Durán, Evelyn Karina
Facultad
Email
erodriguez@ucsc.cl
ORCID
7 results
Research Outputs
Now showing 1 - 7 of 7
- PublicationNon-relativistic three-dimensional supergravity theories and semigroup expansion method(Springer Nature, 2021)
; ; ;Ipinza, MarceloRavera, LucreziaIn this work we present an alternative method to construct diverse non-relativistic Chern-Simons supergravity theories in three spacetime dimensions. To this end, we apply the Lie algebra expansion method based on semigroups to a supersymmetric extension of the Nappi-Witten algebra. Two different families of non-relativistic superalgebras are obtained, corresponding to generalizations of the extended Bargmann superalgebra and extended Newton-Hooke superalgebra, respectively. The expansion method considered here allows to obtain known and new non-relativistic supergravity models in a systematic way. In particular, it immediately provides an invariant tensor for the expanded superalgebra, which is essential to construct the corresponding Chern-Simons supergravity action. We show that the extended Bargmann supergravity and its Maxwellian generalization appear as particular subcases of a generalized extended Bargmann supergravity theory. In addition, we demonstrate that the generalized extended Bargmann and generalized extended Newton-Hooke supergravity families are related through a contraction process. - PublicationThree-dimensional Maxwellian extended Bargmann supergravityWe present a novel three-dimensional non-relativistic Chern-Simons supergravity theory invariant under a Maxwellian extended Bargmann superalgebra. We first study the non-relativistic limits of the minimal and the N = 2 Maxwell superalgebras. We show that a well-defined Maxwellian extended Bargmann supergravity requires to construct by hand a supersymmetric extension of the Maxwellian extended Bargmann algebra by introducing additional fermionic and bosonic generators. The new non-relativistic supergravity action presented here contains the extended Bargmann supergravity as a sub-case.
- PublicationThree-dimensional Maxwellian extended Newtonian gravity and flat limit(Springer Nature, 2020)
; ; ;Rubio-González, GustavoRavera, LucreziaIn the present work we find novel Newtonian gravity models in three space-time dimensions. We first present a Maxwellian version of the extended Newtonian gravity, which is obtained as the non-relativistic limit of a particular U(1)-enlargement of an enhanced Maxwell Chern-Simons gravity. We show that the extended Newtonian gravity appears as a particular sub-case. Then, the introduction of a cosmological constant to the Maxwellian extended Newtonian theory is also explored. To this purpose, we consider the non-relativistic limit of an enlarged symmetry. An alternative method to obtain our results is presented by applying the semigroup expansion method to the enhanced Nappi-Witten algebra. The advantages of considering the Lie algebra expansion procedure is also discussed. - PublicationNon-relativistic gravity theory based on an enlargement of the extended Bargmann algebraIn this work we study a non-relativistic three dimensional Chern-Simons gravity theory based on an enlargement of the Extended Bargmann algebra. A finite nonrelativistic Chern-Simons gravity action is obtained through the non-relativistic contraction of a particular U(1) enlargement of the so-called AdS-Lorentz algebra. We show that the non-relativistic gravity theory introduced here reproduces the Maxwellian Exotic Bargmann gravity theory when a flat limit ℓ → ∞ is applied. We also present an alternative procedure to obtain the non-relativistic versions of the AdS-Lorentz and Maxwell algebras through the semigroup expansion method.
- PublicationOn the supersymmetric extension of Gauss-Bonnet like gravityWe explore the supersymmetry invariance of a supergravity theory in the presence of a non-trivial boundary. The explicit construction of a bulk Lagrangian based on an enlarged superalgebra, known as AdS-Lorentz, is presented. Using a geometric approach we show that the supersymmetric extension of a Gauss-Bonnet like gravity is required in order to restore the supersymmetry invariance of the theory.
- PublicationGeneralized supersymmetric cosmological term in N=1 supergravityAn alternative way of introducing the supersymmetric cosmological term in a supergravity theory is presented. We show that the AdS-Lorentz superalgebra allows to construct a geometrical formulation of supergravity containing a generalized supersymmetric cosmological constant. The N = 1, D = 4 supergravity action is built only from the curvatures of the AdS-Lorentz superalgebra and corresponds to a MacDowell-Mansouri like action. The extension to a generalized AdS-Lorentz superalgebra is also analyzed.
- PublicationN = 1 supergravity and Maxwell superalgebrasWe present the construction of the D = 4 supergravity action from the minimal Maxwell superalgebra sM4, which can be derived from the osp (4|1) superalgebra by applying the abelian semigroup expansion procedure. We show that N = 1, D = 4 pure supergravity can be obtained alternatively as the MacDowell-Mansouri like action built from the curvatures of the Maxwell superalgebra sM4. We extend this result to all minimal Maxwell superalgebras type sMm+2. The invariance under supersymmetry transformations is also analized.