Options
Dra. Rodríguez-Durán, Evelyn
Nombre de publicación
Dra. Rodríguez-Durán, Evelyn
Nombre completo
Rodríguez Durán, Evelyn Karina
Facultad
Email
erodriguez@ucsc.cl
ORCID
4 results
Research Outputs
Now showing 1 - 4 of 4
- PublicationThree-dimensional hypergravity theories and semigroup expansion method(Springer Nature, 2023)
; ; ;Caroca, Ricardo ;Matulich, JavierTempo, DavidIn this work, we apply the semigroup expansion method of Lie algebras to construct novel and known three-dimensional hyper-gravity theories. We show that the expansion procedure considered here yields a consistent way of coupling different three-dimensional Chern-Simons gravity theories with massless spin- 5/2 gauge fields. First, by expanding the osp (1|4) superalgebra with a particular semigroup a generalized hyper-Poincaré algebra is found. Interestingly, the hyper-Poincaré and hyper-Maxwell algebras appear as subalgebras of this generalized hyper-symmetry algebra. Then, we show that the generalized hyper-Poincaré CS gravity action can be written as a sum of diverse hyper-gravity CS Lagrangians. We extend our study to a generalized hyper-AdS gravity theory by considering a different semigroup. Both generalized hyperalgebras are then found to be related through an Inönü-Wigner contraction which can be seen as a generalization of the existing vanishing cosmological constant limit between the hyper-AdS and hyper-Poincaré gravity theories. - PublicationThree-dimensional Maxwellian extended Bargmann supergravityWe present a novel three-dimensional non-relativistic Chern-Simons supergravity theory invariant under a Maxwellian extended Bargmann superalgebra. We first study the non-relativistic limits of the minimal and the N = 2 Maxwell superalgebras. We show that a well-defined Maxwellian extended Bargmann supergravity requires to construct by hand a supersymmetric extension of the Maxwellian extended Bargmann algebra by introducing additional fermionic and bosonic generators. The new non-relativistic supergravity action presented here contains the extended Bargmann supergravity as a sub-case.
- PublicationNon-relativistic three-dimensional supergravity theories and semigroup expansion method(Springer Nature, 2021)
; ; ;Ipinza, MarceloRavera, LucreziaIn this work we present an alternative method to construct diverse non-relativistic Chern-Simons supergravity theories in three spacetime dimensions. To this end, we apply the Lie algebra expansion method based on semigroups to a supersymmetric extension of the Nappi-Witten algebra. Two different families of non-relativistic superalgebras are obtained, corresponding to generalizations of the extended Bargmann superalgebra and extended Newton-Hooke superalgebra, respectively. The expansion method considered here allows to obtain known and new non-relativistic supergravity models in a systematic way. In particular, it immediately provides an invariant tensor for the expanded superalgebra, which is essential to construct the corresponding Chern-Simons supergravity action. We show that the extended Bargmann supergravity and its Maxwellian generalization appear as particular subcases of a generalized extended Bargmann supergravity theory. In addition, we demonstrate that the generalized extended Bargmann and generalized extended Newton-Hooke supergravity families are related through a contraction process. - PublicationFour dimensional topological supergravities from transgression field theory( Springer Nature, 2024)
; ; ;Izaurieta, FernandoSalgado, SebastiánIn this work, we propose a four-dimensional gauged Wess-Zumino-Witten model, obtained as a dimensional reduction from a transgression field theory invariant under the N = 1 Poincaré supergroup. For this purpose, we consider that the two gauge connections on which the transgression action principle depends are given by linear and non-linear realizations of the gauge group respectively. The field content of the resulting four-dimensional theory is given by the gauge fields of the linear connection, in addition to a set of scalar and spinor multiplets in the same representation of the gauge supergroup, which in turn, correspond to the coordinates of the coset space between the gauge group and the five-dimensional Lorentz group. We then decompose the action in terms of four-dimensional quantities and derive the corresponding equations of motion. We extend our analysis to the non- and ultra- relativistic regimes.