Research Outputs

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    Extended kinematical 3D gravity theories
    (Springer Nature, 2024) ; ;
    Pino, Daniel
    ;
    Ravera, Lucrezia
    In this work, we classify all extended and generalized kinematical Lie algebras that can be obtained by expanding the so (2, 2) algebra. We show that the Lie algebra expansion method based on semigroups reproduces not only the original kinematical algebras but also a family of non- and ultra-relativistic algebras. Remarkably, the extended kinematical algebras obtained as sequential expansions of the AdS algebra are characterized by a non-degenerate bilinear invariant form, ensuring the construction of a well-defned Chern-Simons gravity action in three spacetime dimensions. Contrary to the contraction process, the degeneracy of the non-Lorentzian theories is avoided without extending the relativistic algebra but considering a bigger semigroup. Using the properties of the expansion procedure, we show that our construction also applies at the level of the Chern-Simons action.
  • Thumbnail Image
    Publication
    Four dimensional topological supergravities from transgression field theory
    ( Springer Nature, 2024) ; ;
    Izaurieta, Fernando
    ;
    Salgado, Sebastián
    In this work, we propose a four-dimensional gauged Wess-Zumino-Witten model, obtained as a dimensional reduction from a transgression field theory invariant under the N = 1 Poincaré supergroup. For this purpose, we consider that the two gauge connections on which the transgression action principle depends are given by linear and non-linear realizations of the gauge group respectively. The field content of the resulting four-dimensional theory is given by the gauge fields of the linear connection, in addition to a set of scalar and spinor multiplets in the same representation of the gauge supergroup, which in turn, correspond to the coordinates of the coset space between the gauge group and the five-dimensional Lorentz group. We then decompose the action in terms of four-dimensional quantities and derive the corresponding equations of motion. We extend our analysis to the non- and ultra- relativistic regimes.