Options
Dr. Nuñez-Castellanos, Eduardo
Research Outputs
Cyclic behavior of hollow section beam–column moment connection: Experimental and numerical study
2020, Dr. Nuñez-Castellanos, Eduardo, Boainy, Nwar, González, Freddy, Torres, Ronald, Picón, Ricardo, Guerrero, Néstor
Steel buildings with tubular columns showed a satisfactory performance during the Honshu (2011) earthquake, unlike steel buildings in the 1994 Northridge and 1995 Kobe earthquakes, where welded moment connections showed damage in their joints. In this research, a lateral joint using a hollow structural section (HSS)-beam and HSS-column subjected to cyclic displacement was performed. Three large-scale specimens were tested and a numerical model was calibrated, reaching a good adjustment. Later, several configurations of beams and columns were evaluated using finite element (FE) models from the numerical model previously calibrated. A flexural resistance higher 0.80 Mp at 0.04 [rad] was obtained for all cases studied. The ductility factor in the 3 specimens was lower than 2.5, therefore a non-ductile behavior was controlled in the connection. This aspect is very important although a 0.8 Mp at 0.04 [rad] was achieved. Finally, the typical welded moment connection can be improved using the bolted moment connection, which allows the concentration of inelastic incursion in the beam compared with the welded solution. However, a non-ductile behavior derived from local buckling in flanges of a tubular beam can affect the seismic performance.
Influence of global slenderness and sliding pallets on seismic design of steel storage racks: A sensitivity analysis
2022, Dr. Maureira-Carsalade, Nelson, Dr. Nuñez-Castellanos, Eduardo, Mata-Lemus, Ramón, Castro, Jorge, Guerrero, Néstor, Roco, Ángel
In this research, the influence of global slenderness and sliding pallets factor on the seismic design of steel storage racks are assessed. Variations in span length, the height of storage levels, live load, and percentage of live load considered in the seismic mass are studied for different levels of seismic zone and soil type. The models were designed according to the Chilean Code NCh2369. Subsequently, a global sensitivity analysis was developed to analyze the influence of each studied parameter in the seismic design response in terms of fundamental period, drift, and base shear from a response spectral analysis approach. A total of 12000 simulations were performed. Two-hundred additional models were performed to evaluate the variation of seismic mass in the structural response. Results indicate a significant influence of live loads and seismic mass on steel racks designed for soft soils and unbrace conditions. The stiffness also modifies the performance of the racks, mainly in models using braces in the down-aisle direction and cross-aisle direction. In these cases, the seismic mass factor does not have a strong influence on structural response in comparison to the global slenderness.