Options
Dr. Nuñez-Castellanos, Eduardo
Nombre de publicación
Dr. Nuñez-Castellanos, Eduardo
Nombre completo
Nuñez Castellanos, Eduardo
Facultad
Email
enunez@ucsc.cl
ORCID
5 results
Research Outputs
Now showing 1 - 5 of 5
- PublicationCyclic behavior of hollow section beam–column moment connection: Experimental and numerical study(MDPI, 2020)
; ;Boainy, Nwar ;González, Freddy ;Torres, Ronald ;Picón, RicardoGuerrero, NéstorSteel buildings with tubular columns showed a satisfactory performance during the Honshu (2011) earthquake, unlike steel buildings in the 1994 Northridge and 1995 Kobe earthquakes, where welded moment connections showed damage in their joints. In this research, a lateral joint using a hollow structural section (HSS)-beam and HSS-column subjected to cyclic displacement was performed. Three large-scale specimens were tested and a numerical model was calibrated, reaching a good adjustment. Later, several configurations of beams and columns were evaluated using finite element (FE) models from the numerical model previously calibrated. A flexural resistance higher 0.80 Mp at 0.04 [rad] was obtained for all cases studied. The ductility factor in the 3 specimens was lower than 2.5, therefore a non-ductile behavior was controlled in the connection. This aspect is very important although a 0.8 Mp at 0.04 [rad] was achieved. Finally, the typical welded moment connection can be improved using the bolted moment connection, which allows the concentration of inelastic incursion in the beam compared with the welded solution. However, a non-ductile behavior derived from local buckling in flanges of a tubular beam can affect the seismic performance. - PublicationCyclic performance of end-plate biaxial moment connection with HSS columnsThis paper presents a numerical study on the seismic performance of end-plate moment connection between I-beam to HSS (hollow structural section) column stiffened by outer diaphragms (EP-HSS). In previous experimental research, this moment connection showed a satisfactory performance according to requirements established in Seismic provisions. However, one type of joint was studied and bidirectional and axial loads were not considered. In this since, several configurations representative of 2D interior joints and 3D interior and exterior joints in a steel building were modeled and subjected to unidirectional or bidirectional cyclic displacements according to protocol in seismic provisions. Firstly, a similar joint configuration was calibrated from experimental data, obtaining an acceptable adjustment. The assessment of seismic performance was based on hysteretic curves, failure mechanisms, stiffness, dissipated energy, and equivalent damping. The results obtained showed a ductile failure modes for 2D and 3D joint configurations with EP-HSS moment connection. The axial load has no significant effect on the moment connection. However, it affects the column strength due to the increase of the stresses in the column wall. Compared with 2D joints, 3D joints reached higher deformations even when a similar number of beams is used. The external diaphragms to the column panel zone provided rigidity in the joints and no degradation of slope for each loop in load/reload segment for elastic loop; therefore, curves without pinching were observed. All inelastic deformation is concentrated mainly in the beams. A moment resistance above 80% of the capacity of the beam at a drift of 4% is achieved in all joints. From the results reached, the use of EP-HSS moment connection with hollow structural section columns is a reliable alternative in seismic zones when steel moment frames are employed.
- PublicationAssessment of strength reduction factor on concrete moment frames according to the new Venezuelan seismic code(MDPI, 2022)
;Mata Lemus, Ramón ;Idrees Rustom, Ahmad ;Sánchez Rodríguez, Javier ;Torres Moreno, Ronald; Nonlinear static analysis is a validated tool for the seismic evaluation of existing and new structures, specifically for reinforced concrete buildings. In order to assess the performance of reinforced concrete frames designed according to the new Venezuelan seismic code, configurations of low-, medium-, and high-rise concrete buildings are subjected to 20 different load patterns considering the nonlinear behavior according to FEMA P695. A total of 140 concrete frame models were analyzed using modal response spectrum analysis and nonlinear static pushover analysis. The parameters considered for analyzing the models were the response reduction factor (R), the overstrength factor (RΩ), and the ductility factor (Rµ). The results showed a performance controlled by ductile failure mechanisms in low-rise models unlike combined failure mechanisms with columns with plastic hinge in high-rise models. Reduction factor values between 4 and 14 were obtained. In addition, the pushover curves were affected by the load patterns; therefore, it was necessary to identify the representative patterns, refusing the rest of the patterns. A statistical adjustment was performed using a log-normal distribution. The strength reduction factor specified in the new Venezuelan code was higher than the values obtained for the 95% confidence levels according to the distribution assumed in the reinforced concrete frames models. Finally, the strength reduction factor more representative is R = 4. - PublicationAssessment of the seismic behavior of selective storage racks subjected to Chilean earthquakesA seismic performance evaluation of selective storage racks subjected to Chilean Earthquakes was conducted using nonlinear pushover and nonlinear dynamic time-history analyses. Nine seismic records with two horizontal components and magnitude Mw > 7.7 were applied to numerical models of prototype rack structures. The prototype racks were designed considering two types of soil and two aspect ratios. The inelastic behavior of beam connections was included in the models. The results showed a predominantly elastic behavior, mainly in the cross-aisle direction, in comparison to the down-aisle direction. The inelastic action was concentrated in pallet beams and up-rigths. Higher values of base shear were reached, due to elevated rigidity in rack configurations, and an acceptable performance was obtained. A response reduction factor was reported in both directions, reaching values larger than the limit imposed by the Chilean standard. However, values below this limit were obtained in the cross-aisle direction, in some cases. Finally, in all cases, the calculated response modification factor is highly influenced by the overstrength obtained from seismic design.
- PublicationSeismic performance of RC moment frame buildings considering SSI effects: A case study of the new Venezuelan seismic code(Buildings, 2023)
;Hernández, Matías ;Mata, Ramón; ; The Soil–Structure Interaction (SSI) effect has been widely evidenced during several earthquakes around the world. In the Venezuelan context, the seismic event in Caracas in 1967 showed the significant consequences of designing buildings without considering the SSI effect. Nevertheless, limited research on the seismic performance of concrete moment frames (commonly used as structural systems in office and residential buildings in Venezuela and Latin America) considering the SSI effects has been developed, although there have been continuous updates to the Venezuelan Seismic Code. In this research, the influence of the SSI on the seismic performance of RC moment frame buildings designed according to the New Venezuelan Seismic Code was studied. An extensive numerical study of 3D buildings using concrete moment frames supported by mat foundations on sandy and clayey soils was performed. The response spectrum method, non-linear static analysis, and non-linear dynamic analysis were used to assess the seismic response of the archetypes studied. The results show that SSI effects can have a significant impact on the seismic response of RC moment frame buildings, increasing the interstory drift ratio and decreasing the shear forces. As is shown in fragility curves, the probability of collapse increases for cases with flexible bases in comparison to the cases of models with fixed bases. Additionally, in the 24-story archetype, the fixed-base model reached a maximum probability of collapse. Finally, a new proposal for the reduction of the strength-reduction factor (R) must be incorporated into the Venezuelan Seismic Code to improve the safety of the structures. Limitations in the use of RC moment frames must be incorporated for high-rise buildings since, as the present work demonstrates, for high-period structures, the normative provisions are not reached.