Options
Analytic approximations of scattering effects on beam Chromaticity in 21-cm global experiments
Monsalve-Jara, Raul
Rogers, Alan
Barrett, John
Bowman, Judd
Cappallo, Rigel
Lonsdale, Colin
Mahesh, Nivedita
Murray, Steven
Sims, Peter
Radio Science
2022
Scattering from objects near an antenna produce correlated signals from strong compact radio sources in a manner similar to those used by the “Sea Interferometer” to measure the radio source positions using the fine frequency structure in the total power spectrum of a single antenna. These fringes or ripples due to correlated signal interference are present at a low level in the spectrum of any single antenna and are a major source of systematics in systems used to measure the global redshifted 21-cm signal from the early universe. In the Sea Interferometer a single antenna on a cliff above the sea is used to add the signal from the direct path to the signal from the path reflected from the sea thereby forming an interferometer. This was used for mapping radio sources with a single antenna by Bolton and Slee in the 1950s. In this paper we derive analytic expressions to determine the level of these ripples and compare these results in a few simple cases with electromagnetic modeling software to verify that the analytic calculations are sufficient to obtain the magnitude of the scattering effects on the measurements of the global 21-cm signal. These analytic calculations are needed to evaluate the magnitude of the effects in cases that are either too complex or take too much time to be modeled using software
Name
Analytic Approximations of Scattering Effects on Beam Chromaticity in 21-cm Global Experiments.pdf
Size
377.47 KB
Format
Checksum
21-cm
Radio sky spectrum
Beam chromaticity
Scattering effects
Galactic center