Options
C-Algebras on some Free-Banach Spaces
The main goal of this work is to study the Gelfand spaces of some commutative Banach algebras with unit within the space of bounded linear operators. We will also show, under special condition, that this algebra is isometrically isomorphic to some space of continuous functions defined over a compact. Such isometries preserve idempotent elements. This fact will allow us to define the respective associated measure which is known as spectral measure. Let us also notice that this measure is obtained by restriction of the reciprocal of the Gelfand transform to the set of characteristic functions of clopen subsets of the spectrum of above algebra. We will finish this work showing that each element of such algebras described above can be represented as an integral of some continuous function, where the integral has been defined through the spectral measure.
C-algebras
Compact operators
Self-adjoint operators
Spectral measures
Scalar measures
Integration