Publication:
Analysis of a new mixed FEM for stationary incompressible magneto-hydrodynamics

cris.virtual.author-orcid0000-0001-7742-2250
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentFacultad de Ingeniería
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid84f37b7c-af6c-451b-92ee-c757c94b3848
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department84f37b7c-af6c-451b-92ee-c757c94b3848
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.authorDra. Camaño-Valenzuela, Jessika
dc.contributor.authorGarcía, Carlos
dc.contributor.authorOyarzúa, Ricardo
dc.date.accessioned2024-06-07T15:49:20Z
dc.date.available2024-06-07T15:49:20Z
dc.date.issued2022
dc.description.abstractIn this paper we propose and analyze a new mixed finite element method for a stationary magneto-hydrodynamic (MHD) model. The method is based on the utilization of a new dual-mixed formulation recently introduced for the Navier-Stokes problem, which is coupled with a classical primal formulation for the Maxwell equations. The latter implies that the velocity and a pseudostress tensor relating the velocity gradient with the convective term for the hydrodynamic equations, together with the magnetic field and a Lagrange multiplier related with the divergence-free property of the magnetic field, become the main unknowns of the system. Then the associated Galerkin scheme can be defined by employing Raviart–Thomas elements of degree k for the aforementioned pseudostress tensor, discontinuous piecewise polynomial elements of degree k for the velocity, Nédélec elements of degree k for the magnetic field and Lagrange elements of degree k for the associated Lagrange multiplier. The analysis of the continuous and discrete problems are carried out by means of the Lax–Milgram lemma, the Banach–Nečas–Babuška and Banach fixed-point theorems, under a sufficiently small data assumption. In particular, the analysis of the discrete scheme requires a quasi-uniformity assumption on mesh. We also develop an a priori error analysis and show that the proposed finite element method is optimal convergent. Finally, some numerical results illustrating the good performance of the method are provided.
dc.identifier.doi10.1016/j.camwa.2022.09.017
dc.identifier.urihttps://repositorio.ucsc.cl/handle/25022009/10591
dc.languageeng
dc.publisherComputers and Mathematics with Applications
dc.relation.uridoi.org/10.1016/j.camwa.2022.09.017
dc.subjectIncompressible magneto-hydrodynamics
dc.subjectMixed finite element method
dc.subjectBanach spaces
dc.subjectRaviart–Thomas elements
dc.subjectNédélec elements
dc.titleAnalysis of a new mixed FEM for stationary incompressible magneto-hydrodynamics
dc.typeartículo
dspace.entity.typePublication
oairecerif.author.affiliationFacultad de Ingeniería
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
Files