Publication:
Modular multilevel series/parallel converter with switched-inductor energy transfer between modules

No Thumbnail Available
Date
2019
Authors
Dr. Lizana-Fuentes, Ricardo
Rivera, Sebastian
Li, Zhongxi
Luo, Jenny
Peterchev, Angel V.
Goetz, Stefan M.
Journal Title
Journal ISSN
Volume Title
Publisher
IEEE Transactions on Power Electronics
Research Projects
Organizational Units
Journal Issue
Abstract
This paper presents a modular multilevel series/parallel converter (MMSPC) with intermodule switched-inductor power transfer. The switched-inductor voltage conversion feature allows controllable and efficient transfer of energy between modules with nonnegligible voltage difference, providing both step-down and step-up functionalities. Thus, this converter can accurately control and rapidly adjust the voltage of each module to generate an ac output voltage waveform with a controllable number of levels, increasing the quality of the output. Moreover, the intrinsic dc-dc conversion feature can generate a dc controllable output voltage and enable new applications. In this text, we specifically demonstrate how the flexibility of obtaining both ac and dc output with the same setup renders the topology promising for battery energy storage systems and dc microgrid applications. Experimental results validate the topology and concept of an MMSPC with intrinsic switched-inductor conversion.
Description
Keywords
DC–AC power conversion, Energy storage, Modular multilevel converter, Power converter
Citation