Publication:
Multiscale Hybrid-Mixed Methods for the Stokes and Brinkman Equations—A Priori Analysis

cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid0000-0002-4015-6662
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentFacultad de Ingeniería
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcide2ef3988-b021-4383-8cd4-7aa3e48b3184
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.departmente2ef3988-b021-4383-8cd4-7aa3e48b3184
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.authorAraya, Rodolfo
dc.contributor.authorHarder, Christopher
dc.contributor.authorDr. Poza-Díaz, Abner
dc.contributor.authorValentin, Frédéric
dc.date.accessioned2025-03-31T14:59:40Z
dc.date.available2025-03-31T14:59:40Z
dc.date.issued2025
dc.description.abstractThe multiscale hybrid-mixed (MHM) method for the Stokes operator was formally introduced in [R. Araya et al., Comput. Methods Appl. Mech. Engrg., 324, pp. 29–53, 2017] and numerically validated. The method has face degrees of freedom associated with multiscale basis functions computed from local Neumann problems driven by discontinuous polynomial spaces on skeletal meshes. The two-level MHM version approximates the multiscale basis using a stabilized finite element method. This work proposes the first numerical analysis for the one- and two-level MHM method applied to the Stokes/Brinkman equations within a new abstract framework relating MHM methods to discrete primal hybrid formulations. As a result, we generalize the two-level MHM method to include general second-level solvers and continuous polynomial interpolation on faces and establish abstract conditions to have those methods well-posed and optimally convergent on natural norms. We apply the abstract setting to analyze the MHM methods using stabilized and stable finite element methods as second-level solvers with (dis)continuous interpolation on faces. Also, we find that the discrete velocity and pressure variables preserve the balance of forces and conservation of mass at the element level. Numerical benchmarks assess theoretical results.
dc.identifier.doi10.1137/24M1649368
dc.identifier.issn0036-1429
dc.identifier.issn1095-7170
dc.identifier.urihttps://repositorio.ucsc.cl/handle/25022009/12290
dc.languageeng
dc.publisherSociety for Industrial and Applied Mathematics
dc.relation.ispartofSIAM Journal on Numerical Analysis
dc.relation.journalSIAM Journal on Numerical Analysis
dc.rightsregistro bibliográfico
dc.subjectFinite element
dc.subjectMultiscale method
dc.subjectStokes operator
dc.subjectNumerical analysis
dc.titleMultiscale Hybrid-Mixed Methods for the Stokes and Brinkman Equations—A Priori Analysis
dc.typeartículo
dspace.entity.typePublication
oaire.citation.issue2
oaire.citation.volume63
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliationFacultad de Ingeniería
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
Files
License bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
license.txt
Size:
276 B
Format:
Item-specific license agreed to upon submission
Description: