Publication:
A priori and a posteriori error analysis of an augmented mixed-FEM for the Navier–Stokes–Brinkman problem

cris.sourceIdoai:repositorio.ucsc.cl:25022009/2447
cris.virtual.author-orcidhttps://orcid.org/0009-0007-1313-5384
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentFacultad de Ingeniería
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid57ecdfa8-3431-4d14-84a0-e6e8942e4eef
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department57ecdfa8-3431-4d14-84a0-e6e8942e4eef
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.authorDr. Gatica-Simpertigue, Luis
dc.contributor.authorOyarzúa, Ricardo
dc.contributor.authorSánchez, Nestor
dc.date.accessioned2020-05-21T23:17:19Z
dc.date.accessioned2023-09-11T14:48:55Z
dc.date.available2020-05-21T23:17:19Z
dc.date.created2020-05-21T23:17:19Z
dc.date.issued2018
dc.description.abstractWe introduce and analyze an augmented mixed finite element method for the Navier–Stokes–Brinkman problem with nonsolenoidal velocity. We employ a technique previously applied to the stationary Navier–Stokes equation, which consists of the introduction of a modified pseudostress tensor relating the gradient of the velocity and the pressure with the convective term, and propose an augmented pseudostress–velocity formulation for the model problem. The resulting augmented scheme is then written equivalently as a fixed point equation, so that the well-known Banach fixed point theorem, combined with the Lax–Milgram lemma, are applied to prove the unique solvability of the continuous and discrete systems. We point out that no discrete inf–sup conditions are required for the solvability analysis, and hence, in particular for the Galerkin scheme, arbitrary finite element subspaces of the respective continuous spaces can be utilized. For instance, given an integer k≥0, the Raviart–Thomas spaces of order k and continuous piecewise polynomials of degree ≤k+1 constitute feasible choices of discrete spaces for the pseudostress and the velocity, respectively, yielding optimal convergence. We also emphasize that, since the Dirichlet boundary condition becomes a natural condition, the analysis for both the continuous an discrete problems can be derived without introducing any lifting of the velocity boundary datum. In addition, we derive a reliable and efficient residual-based a posteriori error estimator for the augmented mixed method. The proof of reliability makes use of a global inf–sup condition, a Helmholtz decomposition, and local approximation properties of the Clément interpolant and Raviart–Thomas operator. On the other hand, inverse inequalities, the localization technique based on element-bubble and edge-bubble functions, approximation properties of the L2-orthogonal projector, and known results from previous works, are the main tools for proving the efficiency of the estimator. Finally, some numerical results illustrating the performance of the augmented mixed method, confirming the theoretical rate of convergence and properties of the estimator, and showing the behavior of the associated adaptive algorithms, are reported.
dc.identifier.doi10.1016/j.camwa.2017.12.029
dc.identifier.urihttps://repositorio.ucsc.cl/handle/25022009/8112
dc.languageeng
dc.publisherElsevier
dc.subjectNavier–Stokes–Brinkman
dc.subjectNonsolenoidal velocities
dc.subjectMixed finite element method
dc.subjectAugmented formulation
dc.subjectRaviart–Thomas elements
dc.subject.ocdeCiencias Naturales::Matemáticas
dc.titleA priori and a posteriori error analysis of an augmented mixed-FEM for the Navier–Stokes–Brinkman problem
dc.typeartículo
dspace.entity.typePublication
oairecerif.author.affiliationFacultad de Ingeniería
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
relation.isAuthorOfPublication57ecdfa8-3431-4d14-84a0-e6e8942e4eef
Files