Publication:
Residual-based a posteriori error analysis for the coupling of the Navier–Stokes and Darcy–Forchheimer equations

cris.virtual.author-orcid0000-0001-7811-759X
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentFacultad de Ingeniería
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcidd60bef14-1f1a-4108-8f6f-ad03d4bacf38
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.departmentd60bef14-1f1a-4108-8f6f-ad03d4bacf38
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.authorDr. Caucao-Paillán, Sergio
dc.contributor.authorGatica, Gabriel
dc.contributor.authorOyarzúa, Ricardo
dc.contributor.authorSandoval, Felipe
dc.date.accessioned2024-11-08T15:34:13Z
dc.date.available2024-11-08T15:34:13Z
dc.date.issued2021
dc.description.abstractIn this paper we consider a mixed variational formulation that have been recently proposed for the coupling of the Navier–Stokes and Darcy–Forchheimer equations, and derive, though in a non-standard sense, a reliable and efficient residual-baseda posteriorierror estimator suitable for an adaptive mesh-refinement method. For the reliability estimate, which holds with respect to the square root of the error estimator, we make use of the inf-sup condition and the strict monotonicity of the operators involved, a suitable Helmholtz decomposition in non-standard Banach spaces in the porous medium, local approximation properties of the Clément interpolant and Raviart–Thomas operator, and a smallness assumption on the data. In turn, inverse inequalities, the localization technique based on triangle-bubble and edge-bubble functions in localLpspaces, are the main tools for developing the efficiency analysis, which is valid for the error estimator itself up to a suitable additional error term. Finally, several numerical results confirming the properties of the estimator and illustrating the performance of the associated adaptive algorithm are reported.
dc.identifier.doi10.1051/m2an/2021005
dc.identifier.urihttps://repositorio.ucsc.cl/handle/25022009/11683
dc.languageeng
dc.publisherEDP Sciences
dc.rightsacceso abierto
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject65N30
dc.subject65N12
dc.subject65N15
dc.subject35Q79
dc.subject80A20
dc.subject76R05
dc.subject76D07
dc.titleResidual-based a posteriori error analysis for the coupling of the Navier–Stokes and Darcy–Forchheimer equations
dc.typeartículo
dspace.entity.typePublication
oairecerif.author.affiliationFacultad de Ingeniería
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
Residual-based a posteriori error analysis for the coupling of the Navier–Stokes and Darcy–Forchheimer equations.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
Description: