Publication:
A posteriori error analysis of a momentum conservative Banach spaces based mixed-FEM for the Navier-Stokes problem

cris.virtual.author-orcid0000-0001-7742-2250
cris.virtual.author-orcid0000-0001-7811-759X
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentFacultad de Ingeniería
cris.virtual.departmentFacultad de Ingeniería
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid84f37b7c-af6c-451b-92ee-c757c94b3848
cris.virtualsource.author-orcidd60bef14-1f1a-4108-8f6f-ad03d4bacf38
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department84f37b7c-af6c-451b-92ee-c757c94b3848
cris.virtualsource.departmentd60bef14-1f1a-4108-8f6f-ad03d4bacf38
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.authorDra. Camaño-Valenzuela, Jessika
dc.contributor.authorDr. Caucao-Paillán, Sergio
dc.contributor.authorOyarzúa, Ricardo
dc.contributor.authorVilla-Fuentes, Segundo
dc.date.accessioned2024-06-07T15:41:37Z
dc.date.available2024-06-07T15:41:37Z
dc.date.issued2022
dc.description.abstractIn this paper we develop an a posteriori error analysis of a new momentum conservative mixed finite element method recently introduced for the steady-state Navier–Stokes problem in two and three dimensions. More precisely, by extending standard techniques commonly used on Hilbert spaces to the case of Banach spaces, such as local estimates, and suitable Helmholtz decompositions, we derive a reliable and efficient residual-based a posteriori error estimator for the corresponding mixed finite element scheme on arbitrary (convex or non-convex) polygonal and polyhedral regions. On the other hand, inverse inequalities, the localization technique based on bubble functions, among other tools, are employed to prove the efficiency of the proposed a posteriori error indicator. Finally, several numerical results confirming the properties of the estimator and illustrating the performance of the associated adaptive algorithm are reported.
dc.identifier.doi10.1016/j.apnum.2022.02.014
dc.identifier.urihttps://repositorio.ucsc.cl/handle/25022009/10519
dc.languageeng
dc.publisherApplied Numerical Mathematics
dc.relation.uridoi.org/10.1016/j.apnum.2022.02.014
dc.subjectNavier–Stokes
dc.subjectMomentum conservativity
dc.subjectMixed finite element method
dc.subjectBanach spaces
dc.subjectRaviart–Thomas elements
dc.subjectA posteriori
dc.subjectReliability
dc.subjectEfficiency
dc.titleA posteriori error analysis of a momentum conservative Banach spaces based mixed-FEM for the Navier-Stokes problem
dc.typeartículo
dspace.entity.typePublication
oairecerif.author.affiliationFacultad de Ingeniería
oairecerif.author.affiliationFacultad de Ingeniería
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
Files