Publication:
A posteriori error analysis of a Banach spaces-based fully mixed FEM for double-diffusive convection in a fluid-saturated porous medium

cris.virtual.author-orcid0000-0001-7811-759X
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentFacultad de Ingeniería
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcidd60bef14-1f1a-4108-8f6f-ad03d4bacf38
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.departmentd60bef14-1f1a-4108-8f6f-ad03d4bacf38
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.authorDr. Caucao-Paillán, Sergio
dc.contributor.authorGatica, Gabriel
dc.contributor.authorOrtega, Juan
dc.date.accessioned2023-12-04T19:17:30Z
dc.date.available2023-12-04T19:17:30Z
dc.date.issued2023
dc.description.abstractIn this paper we consider a Banach spaces-based fully-mixed variational formulation that has been recently proposed for the coupling of the stationary Brinkman–Forchheimer and double-diffusion equations, and develop the first reliable and efficient residual-based a posteriori error estimator for the 2D and 3D versions of the associated mixed finite element scheme. For the reliability analysis, and due to the nonlinear nature of the problem, we employ the strong monotonicity of the operator involving the Forchheimer term, in addition to inf-sup conditions of some of the resulting bilinear forms, along with a stable Helmholtz decomposition in nonstandard Banach spaces, which, in turn, having been recently derived, constitutes another distinctive feature of the paper, and local approximation properties of the Raviart–Thomas and Clément interpolants. On the other hand, inverse inequalities, the localization technique through bubble functions, and known results from previous works, are the main tools yielding the efficiency estimate. Finally, several numerical examples confirming the theoretical properties of the estimator and illustrating the performance of the associated adaptive algorithms, are reported. In particular, the case of flow through a 2D porous media with an irregular channel networks is considered.
dc.identifier.doi10.1007/s10596-023-10195-5
dc.identifier.urihttps://repositorio.ucsc.cl/handle/25022009/9582
dc.languageeng
dc.publisherComputational Geosciences
dc.subjectBrinkman–Forchheimer equations
dc.subjectDouble
dc.subjectDiffusion equations
dc.subjectFully
dc.subjectMixed finite element methods
dc.subjectBanach spaces
dc.subjectA posteriori error analysis
dc.subjectReliability
dc.subjectEfficiency
dc.subject.ocdeCiencias Naturales::Computación y ciencias de la información
dc.subject.ocdeCiencias Naturales::Ciencias de la tierra y medioambientales
dc.titleA posteriori error analysis of a Banach spaces-based fully mixed FEM for double-diffusive convection in a fluid-saturated porous medium
dc.typeartículo
dspace.entity.typePublication
oairecerif.author.affiliationFacultad de Ingeniería
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
Files