Publication:
A new approach for the study of limit cycles

cris.virtual.author-orcid0000-0002-4475-5064
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentFacultad de Ingeniería
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcidd5a7435f-f7b4-46c7-9712-7463b17dd851
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.departmentd5a7435f-f7b4-46c7-9712-7463b17dd851
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.authorDra. García-Saldaña, Johanna
dc.contributor.authorGasull, A.
dc.contributor.authorGiacomini, H.
dc.date.accessioned2024-06-07T15:50:18Z
dc.date.available2024-06-07T15:50:18Z
dc.date.issued2020
dc.description.abstractWe prove that star-like limit cycles of any planar polynomial system can also be seen either as solutions defined on a given interval of a new associated planar non-autonomous polynomial system or as heteroclinic solutions of a 3-dimensional polynomial system. We illustrate these points of view with several examples. One of the key ideas in our approach is to decompose the periodic solutions as the sum of two suitable functions. As a first application we use these new approaches to prove that all star-like reversible limit cycles are algebraic. As a second application we introduce a function whose zeroes control the periodic orbits that persist as limit cycles when we perturb a star-like reversible center. As far as we know this is the f irst time that this question is solved in full generality. Somehow, this function plays a similar role that an Abelian integral for studying perturbations of Hamiltonian systems.
dc.identifier.doi10.1016/j.jde.2020.04.038
dc.identifier.urihttps://repositorio.ucsc.cl/handle/25022009/10601
dc.languageeng
dc.publisherJournal of Differential Equations
dc.relation.uridoi.org/10.1016/j.jde.2020.04.038
dc.subjectPeriodic orbits
dc.subjectLimit cycle
dc.subjectAbelian integral
dc.subjectHeteroclinic solution
dc.subjectReversible center
dc.subjectAlgebraic limit cycle
dc.titleA new approach for the study of limit cycles
dc.typeartículo
dspace.entity.typePublication
oairecerif.author.affiliationFacultad de Ingeniería
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
Files