Publication:
Integration of Slurry–Total Reflection X-ray fluorescence and machine learning for monitoring arsenic and lead contamination: Case study in Itata valley agricultural soils, Chile

cris.virtual.author-orcid0000-0002-2630-3400
cris.virtual.author-orcid0000-0003-0438-3080
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentFacultad de Ciencias
cris.virtual.departmentFacultad de Ingeniería
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid9799c03e-6bae-47a1-8da5-f1162011c8f2
cris.virtualsource.author-orcidc2292b2b-4ce4-4b5e-968d-693d31943719
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department9799c03e-6bae-47a1-8da5-f1162011c8f2
cris.virtualsource.departmentc2292b2b-4ce4-4b5e-968d-693d31943719
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.authorMedina-González, Guillermo
dc.contributor.authorDr. Muñoz-Ortiz, Enrique
dc.contributor.authorAndrade-Villagrán, Paola
dc.contributor.authorMedina, Yelena
dc.contributor.authorCruz, Jordi
dc.contributor.authorRodriguez-Gallo, Yakdiel
dc.contributor.authorMatus-Bello, Alison
dc.date.accessioned2024-11-25T14:10:42Z
dc.date.available2024-11-25T14:10:42Z
dc.date.issued2024
dc.description.abstractThe accuracy of determining arsenic and lead using the optical technique Slurry–Total Reflection X-ray Fluorescence (Slurry-TXRF) was significantly enhanced through the application of a machine learning method, aimed at improving the ecological risk assessment of agricultural soils. The overlapping of the arsenic Kα signal at 10.55 keV with the lead Lα signal at 10.54 keV due to the relatively low resolution of TXRF could compromise the determination of lead. However, by applying a Partial Least Squares (PLS) machine learning algorithm, we mitigated interference variations, resulting in improved selectivity and accuracy. Specifically, the average percentage error was reduced from 15.6% to 9.4% for arsenic (RMSEP improved from 5.6 mg kg−1 to 3.3 mg kg−1) and from 18.9% to 6.8% for lead (RMSEP improved from 12.3 mg kg−1 to 5.03 mg kg−1) compared to the previous univariable model. This enhanced predictive accuracy, within the set of samples concentration range, is attributable to the efficiency of the multivariate calibration first-order advantage in quantifying the presence of interferents. The evaluation of X-ray fluorescence emission signals for 26 different synthetic calibration mixtures confirmed these improvements, overcoming spectral interferences. Additionally, the application of these models enabled the quantification of arsenic and lead in soils from a viticultural subregion of Chile, facilitating the estimation of ecological risk indices in a fast and reliable manner. The results indicate that the contamination level of these soils with arsenic and lead ranges from moderate to considerable.
dc.identifier.doi10.3390/pr12081760
dc.identifier.urihttps://repositorio.ucsc.cl/handle/25022009/11852
dc.languageeng
dc.publisherMDPI
dc.rightsacceso abierto
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectEcological indices
dc.subjectContamination
dc.subjectTXRF
dc.subjectMachine learning
dc.subjectArsenic
dc.subjectLead
dc.titleIntegration of Slurry–Total Reflection X-ray fluorescence and machine learning for monitoring arsenic and lead contamination: Case study in Itata valley agricultural soils, Chile
dc.typeartículo
dspace.entity.typePublication
oairecerif.author.affiliationFacultad de Ciencias
oairecerif.author.affiliationFacultad de Ingeniería
oairecerif.author.affiliationFacultad de Ciencias
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
Integration of Slurry–Total Reflection X-ray fluorescence and machine learning for monitoring arsenic and lead contamination. Case study in Itata valley agricultural soils, Chile.pdf
Size:
2.92 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
license.txt
Size:
276 B
Format:
Item-specific license agreed to upon submission
Description: