Options
Establishing the global isoscape of leaf carbon in C3 plants through the integrations of remote sensing, carbon, geographic, and physiological information
Wang, Xiang
Chen, Guo
Awange, Joseph
Song, Yongze
Wu, Qi
Li, Xiaowei
February, Edmund
Kiese, Ralf
Li, Xing
Xiao, Jingfeng
Zhao, Xiaoxiang
Wen, Bo
Elsevier
2024
The carbon isotope composition (δ13CLeaf) of C3 plant leaves provides valuable information on the carbon-water cycle of vegetation and their responses to climate change within terrestrial ecosystems. However, global applications of δ13CLeaf are hindered by a lack of global long-term spatial maps (isoscapes) that capture vegetation δ13CLeaf variations. The ways in which δ13CLeaf varies over time and across regions are still unknown. In this study, we collected leaf carbon isotope samples across the globe and selected the optimal predictive model from three machine learning algorithms to construct long-term annual global δ13CLeaf isoscapes at a spatial resolution of 0.05° for natural C3 plants between 2001 and 2020. We also assessed the potential of remotely sensed spectral bands, atmospheric CO2 characteristics, geographic, and physiological information to estimate the δ13CLeaf of the global C3 plants. Our results show that the random forest (RF) algorithm can more accurately construct the δ13CLeaf isoscape (R2 = 0.61, Nash Sutcliffe = 0.61, RMSE = 1.21‰, MAE = 0.91‰) than the multilayer perceptron (MLP) and support vector machine (SVM). The inclusion of atmospheric CO2 characteristics, geographical, and physiological information greatly improves prediction compared to relying only on spectral bands. Among the variables, elevation, band 3 spectral reflectance, and solar-induced chlorophyll fluorescence were the three most important variables for constructing the isoscape model, and their relative importance all exceeded 85%. The predicted isoscape revealed strong spatial heterogeneity of δ13CLeaf for C3 plants at a global scale between different continental regions, with enriched values occurring in high-altitude cold and arid regions, and depleted values occurring in warm, humid, or tropical regions. For the first time, we estimated the global depleted rate of δ13CLeaf in C3 plant (−0.0491 ± 0.07 ‰ year−1 from 2001 to 2020). Over the past two decades, 86.49% and 1.00% of global grid cells showed more depleted and more enriched trends in δ13CLeaf of C3 plants, respectively. Our results demonstrated the potential for establishing isoscapes by combining remote sensing, atmospheric CO2 characteristics, physiological, and geographic variables using the RF machine learning algorithm. The isoscape products generated in this study are valuable for assessing carbon-water coupling of terrestrial ecosystems and for improving land surface models.
Remotely sensed data
Spectral bands
Stable isotope
MODIS
Machine learning
Solar-induced fluorescence
Global scale