Publication:
Big data in multi-block data analysis: An approach to parallelizing Partial Least Squares Mode B algorithm

cris.sourceIdoai:repositorio.ucsc.cl:25022009/2878
dc.contributor.authorMartinez Ruiz, Alba
dc.contributor.authorMontanola Sales, Cristina
dc.date.accessioned2020-08-26T23:19:56Z
dc.date.accessioned2023-09-11T14:57:47Z
dc.date.available2020-08-26T23:19:56Z
dc.date.created2020-08-26T23:19:56Z
dc.date.issued2019
dc.description.abstractPartial Least Squares (PLS) Mode B is a multi-block method and a tightly coupled algorithm for estimating structural equation models (SEMs). Describing key aspects of parallel computing, we approach the parallelization of the PLS Mode B algorithm to operate on large distributed data. We show the scalability and performance of the algorithm at a very fine-grained level thanks to the versatility of pbdR, a R-project library for parallel computing. We vary several factors under different data distribution schemes in a supercomputing environment. Shorter elapsed times are obtained for the square-blocking factor 16×16 using a grid of processors as square as possible and non-square blocking factors 1000×4 and 10000×4 using an one-column grid of processors. Depending on the configuration, distributing data in a larger number of cores allows reaching speedups of up to 121 over the CPU implementation. Moreover, we show that SEMs can be estimated with big data sets using current state-of-the-art algorithms for multi-block data analysis.
dc.description.sponsorshipFacultad de Ingeniería
dc.identifier.doi10.1016/j.heliyon.2019.e01451
dc.identifier.urihttps://repositorio.ucsc.cl/handle/25022009/8704
dc.languageeng
dc.publisherHeliyon
dc.rightsacceso abierto
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectComputer science
dc.subjectComputational mathematics
dc.subject.ocdeCiencias Naturales::Matemáticas
dc.titleBig data in multi-block data analysis: An approach to parallelizing Partial Least Squares Mode B algorithm
dc.typeartículo
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
1-s2.0-S2405844018367616-main.pdf
Size:
812.15 KB
Format:
Adobe Portable Document Format
Description: