Publication:
On an adaptive stabilized mixed finite element method for the Oseen problem with mixed boundary conditions

cris.sourceIdoai:repositorio.ucsc.cl:25022009/2952
cris.virtual.author-orcidhttps://orcid.org/0000-0003-2396-8869
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentFacultad de Ingeniería
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcidde01cd99-4f75-4847-a04a-379465dad9b5
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.departmentde01cd99-4f75-4847-a04a-379465dad9b5
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.authorDr. Barrios-Faúndez, Tomás
dc.contributor.authorCascón, J. Manuel
dc.contributor.authorGonzález, María
dc.date.accessioned2021-05-04T21:58:06Z
dc.date.accessioned2023-09-11T14:52:10Z
dc.date.available2021-05-04T21:58:06Z
dc.date.created2021-05-04T21:58:06Z
dc.date.issued2020
dc.description.abstractWe consider the Oseen problem with nonhomogeneous Dirichlet boundary conditions on a part of the boundary and a Neumann type boundary condition on the remaining part. Suitable least squares terms that arise from the constitutive law, the momentum equation and the Dirichlet boundary condition are added to a dual-mixed formulation based on the pseudostress-velocity variables. We prove that the new augmented variational formulation and the corresponding Galerkin scheme are well-posed, and a Céa estimate holds for any finite element subspaces. We also provide the rate of convergence when each row of the pseudostress is approximated by Raviart–Thomas elements and the velocity is approximated by continuous piecewise polynomials. We develop an a posteriori error analysis based on a Helmholtz-type decomposition, and derive a posteriori error indicators that consist of two residual terms per element except on those elements with a side on the Dirichlet boundary, where they both have two additional terms. We prove that these a posteriori error indicators are reliable and locally efficient. Finally, we provide several numerical experiments that support the theoretical results.
dc.identifier.doi10.1016/j.cma.2020.113007
dc.identifier.urihttps://repositorio.ucsc.cl/handle/25022009/8327
dc.languageeng
dc.publisherElsevier
dc.rightsacceso abierto
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectOseen
dc.subjectMixed finite element
dc.subjectStabilization
dc.subjectA posteriori error estimates
dc.subject.ocdeCiencias Naturales::Matemáticas
dc.subject.ocdeIngeniería y tecnología::Ingeniería mecánica
dc.subject.ocdeIngeniería y tecnología::Otras ingenierías y tecnologías
dc.titleOn an adaptive stabilized mixed finite element method for the Oseen problem with mixed boundary conditions
dc.typeartículo
dspace.entity.typePublication
oairecerif.author.affiliationFacultad de Ingeniería
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
relation.isAuthorOfPublicationde01cd99-4f75-4847-a04a-379465dad9b5
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
1-s2.0-S0045782520301912-main.pdf
Size:
2.61 MB
Format:
Adobe Portable Document Format
Description: