• Home
  • UCSC journals portal
  • ANID repository
  • UCSC Thesis Repository
  • English
  • Español
  • Log In
    Have you forgotten your password?
  1. Home
  2. Productividad Científica
  3. Publicaciones Científicas
  4. Load-velocity relationship in variations of the half-squat exercise: Influence of execution technique
 
Options
Load-velocity relationship in variations of the half-squat exercise: Influence of execution technique
Pérez Castilla, Alejandro
García-Ramos, Amador
Padial, Paulino
Morales Artacho, Antonio J.
Feriche, Belen
10.1519/JSC.0000000000002072
Wolters Kluwer
2020
Pérez-Castilla, A, García-Ramos, A, Padial, P, Morales-Artacho, AJ, and Feriche, B. Load-velocity relationship in variations of the half-squat exercise: influence of execution technique. J Strength Cond Res 34(4): 1024–1031, 2020—Previous studies have revealed that the velocity of the bar can be used to determine the intensity of different resistance training exercises. However, the load-velocity relationship seems to be exercise dependent. This study aimed to compare the load-velocity relationship obtained from 2 variations of the half-squat exercise (traditional vs. ballistic) using 2 execution techniques (eccentric-concentric vs. concentric-only). Twenty men performed a submaximal progressive loading test in 4 half-squat exercises: eccentric-concentric traditional-squat, concentric-only traditional-squat, countermovement jump (i.e., ballistic squat using the eccentric-concentric technique), and squat jump (i.e., ballistic squat using the concentric-only technique). Individual linear regressions were used to estimate the 1 repetition maximum (1RM) for each half-squat exercise. Thereafter, another linear regression was applied to establish the relationship between the relative load (%RM) and mean propulsive velocity (MPV). For all exercises, a strong relationship was observed between %RM and MPV: eccentric-concentric traditional-squat (R2 = 0.949), concentric-only traditional-squat (R2 = 0.920), countermovement jump (R2 = 0.957), and squat jump (R2 = 0.879). The velocities associated with each %RM were higher for the ballistic variation and the eccentric-concentric technique than for the traditional variation and concentric-only technique, respectively. Differences in velocity among the half-squat exercises decreased with the increment in the relative load. These results demonstrate that the MPV can be used to predict exercise intensity in the 4 half-squat exercises. However, independent regressions are required for each half-squat exercise because the load-velocity relationship proved to be task specific.
Velocity-based training
Traditional
Ballistic
Jump squat
Eccentric-concentric technique
Concentric-only technique
Ciencias de la salud
Historial de mejoras
Proyecto financiado por: