Publication:
A supervised machine learning approach for estimating plate interface locking: Application to Central Chile

cris.virtual.author-orcid0000-0001-7999-6303
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentFacultad de Ingeniería
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid28800975-db2a-45e3-88db-7382f7aaad90
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department28800975-db2a-45e3-88db-7382f7aaad90
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.authorDr. Benavente-Bravo, Roberto
dc.contributor.authorBarra, Sebastián
dc.contributor.authorMoreno, Marcos
dc.contributor.authorOrtega-Culaciati, Francisco
dc.contributor.authorAraya, Rodolfo
dc.contributor.authorBedford, Jonathan
dc.contributor.authorCalisto, Ignacia
dc.date.accessioned2024-10-24T16:01:27Z
dc.date.available2024-10-24T16:01:27Z
dc.date.issued2024
dc.description.abstractEstimating locking degree at faults is important for determining the spatial distribution of slip deficit at seismic gaps. Inverse methods of varying complexity are commonly used to estimate fault locking. Here we present an innovative approach to infer the degree of locking from surface GNSS velocities by means of supervised learning (SL) algorithms. We implemented six different SL regression methods and apply them in the Central Chile subduction. These methods were first trained on synthetic distributions of locking and then used to infer the locking from GNSS observations. We tested the performance of each algorithm and compared our results with a least squares inversion method. Our best results were obtained using the Ridge regression, which gives a root mean square error (RMSE) of 1.94 mm/yr compared to GNSS observations. The ML-based locking degree distribution is consistent with results from the EPIC Tikhonov regularized least squares inversion and previously published locking maps. Our study demonstrates the effectiveness of machine learning methods in estimating fault locking and slip, and provides flexible options for incorporating prior information to avoid slip instabilities based on the characteristics of the training set. Exploring uncertainties in the physical model during training could improve the robustness of locking estimates in future research efforts.
dc.identifier.doi10.1016/j.pepi.2024.107207
dc.identifier.urihttps://repositorio.ucsc.cl/handle/25022009/11496
dc.languageeng
dc.publisherElsevier
dc.rightsregistro bibliográfico
dc.subjectSubduction zone
dc.subjectInterseismic locking
dc.subjectMachine learning
dc.subjectGNSS
dc.subjectSlip estimation
dc.titleA supervised machine learning approach for estimating plate interface locking: Application to Central Chile
dc.typeartículo
dspace.entity.typePublication
oairecerif.author.affiliationFacultad de Ingeniería
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
Files