Publication:
A conforming mixed finite element method for the Navier-Stokes/Darcy-Forchheimer coupled problem

cris.virtual.author-orcid0000-0001-7811-759X
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.departmentFacultad de Ingeniería
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcidd60bef14-1f1a-4108-8f6f-ad03d4bacf38
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.departmentd60bef14-1f1a-4108-8f6f-ad03d4bacf38
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.contributor.authorDr. Caucao-Paillán, Sergio
dc.contributor.authorDiscacciati, Marco
dc.contributor.authorGatica, Gabriel
dc.contributor.authorOyarzúa, Ricardo
dc.date.accessioned2024-06-07T15:39:23Z
dc.date.available2024-06-07T15:39:23Z
dc.date.issued2020
dc.description.abstractIn this work we present and analyse a mixed finite element method for the coupling of fluid flow with porous media flow. The flows are governed by the Navier–Stokes and the Darcy–Forchheimer equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers–Joseph–Saffman law. We consider the standard mixed formulation in the Navier–Stokes domain and the dual-mixed one in the Darcy–Forchheimer region, which yields the introduction of the trace of the porous medium pressure as a suitable Lagrange multiplier. The well-posedness of the problem is achieved by combining a fixed-point strategy, classical results on nonlinear monotone operators and the well-known Schauder and Banach fixed-point theorems. As for the associated Galerkin scheme we employ Bernardi–Raugel and Raviart–Thomas elements for the velocities, and piecewise constant elements for the pressures and the Lagrange multiplier, whereas its existence and uniqueness of solution is established similarly to its continuous counterpart, using in this case the Brouwer and Banach fixed-point theorems, respectively. We show stability, convergence, and a priori error estimates for the associated Galerkin scheme. Finally, we report some numerical examples confirming the predicted rates of convergence, and illustrating the performance of the method.
dc.identifier.doi10.1051/m2an/2020009
dc.identifier.urihttps://repositorio.ucsc.cl/handle/25022009/10497
dc.languageeng
dc.publisherESAIM: Mathematical Modelling and Numerical Analysis
dc.relation.uridoi.org/10.1051/m2an/2020009
dc.subjectNavier–Stokes problem
dc.subjectDarcy–Forchheimer problem
dc.subjectPressure-velocity formulation
dc.subjectFixed-point theory
dc.subjectMixed finite element methods
dc.subjectA priori error analysis
dc.titleA conforming mixed finite element method for the Navier-Stokes/Darcy-Forchheimer coupled problem
dc.typeartículo
dspace.entity.typePublication
oairecerif.author.affiliationFacultad de Ingeniería
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation#PLACEHOLDER_PARENT_METADATA_VALUE#
Files