Options
Dr. Ávila-Macaya, Ariel
Nombre de publicación
Dr. Ávila-Macaya, Ariel
Nombre completo
Ávila Macaya, Ariel Salvatore
Facultad
Email
aavila@ucsc.cl
ORCID
13 results
Research Outputs
Now showing 1 - 10 of 13
- PublicationImpaired communication at the neuromotor axis during Degenerative Cervical Myelopathy(Frontiers, 2024)
; ; ;Ojeda-Orellana, Jorge ;Vergara, Mayra ;Henríquez, JuanFehlings, MichaelDegenerative Cervical Myelopathy (DCM) is a progressive neurological condition characterized by structural alterations in the cervical spine, resulting in compression of the spinal cord. While clinical manifestations of DCM are well-documented, numerous unanswered questions persist at the molecular and cellular levels. In this study, we sought to investigate the neuromotor axis during DCM. We use a clinically relevant mouse model, where after 3 months of DCM induction, the sensorimotor tests revealed a significant reduction in both locomotor activity and muscle strength compared to the control group. Immunohistochemical analyses showed alterations in the gross anatomy of the cervical spinal cord segment after DCM. These changes were concomitant with the loss of motoneurons and a decrease in the number of excitatory synaptic inputs within the spinal cord. Additionally, the DCM group exhibited a reduction in the endplate surface, which correlated with diminished presynaptic axon endings in the supraspinous muscles. Furthermore, the biceps brachii (BB) muscle exhibited signs of atrophy and impaired regenerative capacity, which inversely correlated with the transversal area of remnants of muscle fibers. Additionally, metabolic assessments in BB muscle indicated an increased proportion of oxidative skeletal muscle fibers. In line with the link between neuromotor disorders and gut alterations, DCM mice displayed smaller mucin granules in the mucosa layer without damage to the epithelial barrier in the colon. Notably, a shift in the abundance of microbiota phylum profiles reveals an elevated Firmicutes-to-Bacteroidetes ratio—a consistent hallmark of dysbiosis that correlates with alterations in gut microbiota-derived metabolites. Additionally, treatment with short-chain fatty acids stimulated the differentiation of the motoneuron-like NSC34 cell line. These findings shed light on the multifaceted nature of DCM, resembling a synaptopathy that disrupts cellular communication within the neuromotor axis while concurrently exerting influence on other systems. Notably, the colon emerges as a focal point, experiencing substantial perturbations in both mucosal barrier integrity and the delicate balance of intestinal microbiota. - PublicationMechanistic perspective on the actions of vitamin a in autism spectrum disorder etiologyVitamin A (VA) has many functions in the body, some of which are key for the development and functioning of the nervous system, while some others might indirectly influence neural function. Both hypovitaminosis and hypervitaminosis A can lead to clinical manifestations of concern for individuals and for general global health. Scientific evidence on the link between VA and autism spectrum disorder (ASD) is growing, with some clinical studies and accumulating results obtained from basic research using cellular and animal models. Remarkably, it has been shown that VA deficiency can exacerbate autistic symptomatology. In turn, VA supplementation has been shown to be able to improve autistic symptomatology in selected groups of individuals with ASD. However, it is important to recognize that ASD is a highly heterogeneous condition. Therefore, it is important to clarify how and when VA supplementation can be of benefit for affected individuals. Here we delve into the relationship between VA and ASD, discussing clinical observations and mechanistic insights obtained from research on selected autistic syndromes and laboratory models to advance in defining how the VA signaling pathway can be exploited for treatment of ASD.
- PublicationMeCP2 gene therapy ameliorates disease phenotype in mouse model for Pitt Hopkins syndrome(Elsevier, 2024)
; ;Dennys, Cassandra ;Vermudez, Sheryl ;Deacon, Robert ;Sierra-Delgado, J. ;Rich, Kelly ;Zhang, Xiaojin ;Buch, Aditi ;Weiss, Kelly ;Moxley, Yuta ;Rajpal, Hemangi ;Espinoza, Francisca ;Powers, Samantha ;Gogliotti, Rocco ;Cogram, Patricia ;Niswender, ColleenMeyer, KathrinThe neurodevelopmental disorder Pitt Hopkins syndrome (PTHS) causes clinical symptoms similar to Rett syndrome (RTT) patients. However, RTT is caused by MECP2 mutations whereas mutations in the TCF4 gene lead to PTHS. The mechanistic commonalities underling these two disorders are unknown, but their shared symptomology suggest that convergent pathway-level disruption likely exists. We reprogrammed patient skin derived fibroblasts into induced neuronal progenitor cells. Interestingly, we discovered that MeCP2 levels were decreased in PTHS patient iNPCs relative to healthy controls and that both iNPCs and iAstrocytes displayed defects in function and differentiation in a mutation-specific manner. When Tcf4þ+/- mice were genetically crossed with mice overexpressing MeCP2, molecular and phenotypic defects were significantly ameliorated, underlining and important role of MeCP2 in PTHS pathology. Importantly, post-natal intracerebroventricular gene replacement therapy with adeno-associated viral vector serotype 9 (AAV9)-expressing MeCP2 (AAV9.P546.MeCP2) significantly improved iNPC and iAstrocyte function and effectively ameliorated histological and behavioral defects in Tcf4þ+/- mice. Combined, our data suggest a previously unknown role of MeCP2 in PTHS pathology and common pathways that might be affected in multiple neurodevelopmental disorders. Our work highlights potential novel therapeutic targets for PTHS, including upregulation of MeCP2 expression or its downstream targets or, potentially, MeCP2-based gene therapy. - PublicationTcf4 dysfunction alters dorsal and ventral cortical neurogenesis in Pitt-Hopkins syndrome mouse model showing sexual dimorphism(Elsevier, 2024)
; ;Espinoza-Romero, Francisca ;Carrazana-Escalona, Ramón ;Retamal-Fredes, Eduardo ;Ávila, Denisse ;Papes, FabioMuotri, AlyssonPitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by haploinsufficiency of transcription factor 4 (TCF4). In this work, we focused on the cerebral cortex and investigated in detail the progenitor cell dynamics and the outcome of neurogenesis in a PTHS mouse model. Labeling and quantification of progenitors and newly generated neurons at various time points during embryonic development revealed alterations affecting the dynamic of cortical progenitors since the earliest stages of cortex formation in PTHS mice. Consequently, establishment of neuronal populations and layering of the cortex were found to be altered in heterozygotes subjects at birth. Interestingly, defective layering process of pyramidal neurons was partially rescued by reintroducing TCF4 expression using focal in utero electroporation in the cerebral cortex. Coincidentally with a defective dorsal neurogenesis, we found that ventral generation of interneurons was also defective in this model, which may lead to an excitation/inhibition imbalance in PTHS. Overall, sex-dependent differences were detected with more marked effects evidenced in males compared with females. All of this contributes to expand our understanding of PTHS, paralleling the advances of research in autism spectrum disorder and further validating the PTHS mouse model as an important tool to advance preclinical studies. - PublicationDegenerative Cervical Myelopathy induces sex-specific dysbiosis in mice(Frontiers, 2023)
; ; ;Retamal-Fredes, Eduardo; Fehlings, MichaelDegenerative Cervical Myelopathy (DCM) is the most common cause of spinal cord impairment in elderly populations. It describes a spectrum of disorders that cause progressive spinal cord compression, neurological impairment, loss of bladder and bowel functions, and gastrointestinal dysfunction. The gut microbiota has been recognized as an environmental factor that can modulate both the function of the central nervous system and the immune response through the microbiota-gut-brain axis. Changes in gut microbiota composition or microbiota-producing factors have been linked to the progression and development of several pathologies. However, little is known about the potential role of the gut microbiota in the pathobiology of DCM. Here, DCM was induced in C57BL/6 mice by implanting an aromatic polyether material underneath the C5-6 laminae. The extent of DCM-induced changes in microbiota composition was assessed by 16S rRNA sequencing of the fecal samples. The immune cell composition was assessed using flow cytometry. To date, several bacterial members have been identified using BLAST against the largest collection of metagenome-derived genomes from the mouse gut. In both, female and males DCM caused gut dysbiosis compared to the sham group. However, dysbiosis was more pronounced in males than in females, and several bacterial members of the families Lachnospiraceae and Muribaculaceae were significantly altered in the DCM group. These changes were also associated with altered microbe-derived metabolic changes in propionate-, butyrate-, and lactate-producing bacterial members. Our results demonstrate that DCM causes dynamic changes over time in the gut microbiota, reducing the abundance of butyrate-producing bacteria, and lactate-producing bacteria to a lesser extent. Genome-scale metabolic modeling using gapseq successfully identified pyruvate-to-butanoate and pyruvate-to-propionate reactions involving genes such as Buk and ACH1, respectively. These results provide a better understanding of the sex-specific molecular effects of changes in the gut microbiota on DCM pathobiology. - PublicationAcute systemic white blood cell changes following Degenerative Cervical Myelopathy (DCM) in a Mouse Model(International Journal of Molecular Sciences, 2022)
; ; ;Ulndreaj, Antigona ;Hong, James ;Zhou, CindyFehlings, MichaelDegenerative cervical myelopathy (DCM) is caused by age-related degeneration of the cervical spine, causing chronic spinal cord compression and inflammation. The aim of this study was to assess whether the natural progression of DCM is accompanied by hematological changes in the white blood cell composition. If so, these changes can be used for diagnosis complementing established imaging approaches and for the development of treatment strategies, since peripheral immunity affects the progression of DCM. Gradual compression of the spinal cord was induced in C57B/L mice at the C5-6 level. The composition of circulating white blood cells was analyzed longitudinally at four time points after induction of DCM using flow cytometry. At 12 weeks, serum cytokine levels were measured using a Luminex x-MAP assay. Neurological impairment in the mouse model was also assessed using the ladder walk test and CatWalk. Stepping function (* p < 0.05) and overground locomotion (*** p < 0.001) were impaired in the DCM group. Importantly, circulating monocytes and T cells were affected primarily at 3 weeks following DCM. T cells were two-fold lower in the DCM group (*** p < 0.0006), whereas monocytes were four-fold increased (*** p < 0.0006) in the DCM compared with the sham group. Our data suggest that changes in white blood cell populations are modest, which is unique to other spinal cord pathologies, and precede the development of neurobehavioral symptoms. - PublicationGenome sequencing variations in the Octodon degus, an unconventional natural model of aging and Alzheimer's disease(Frontiers, 2022)
;Hurley, Michael J. ;Urra, Claudio ;Garduno, B. Maximiliano ;Bruno, Agostino ;Kimbell, Allison ;Wilkinson, Brent ;Marino Buslje, Cristina ;Ezquer, Marcelo ;Ezquer, Fernando ;Aburto, Pedro F. ;Poulin, Elie ;Vásquez, Rodrigo A. ;Deacon, Robert; ;Deacon, Francisco ;Whitney Vanderklish, Peter ;Zampieri, Guido ;Angione, Claudio ;Constantino, Gabriele ;Holmes, Todd C. ;Coba, Marcelo P. ;Xu, XiangminCogram, PatriciaThe degu (Octodon degus) is a diurnal long-lived rodent that can spontaneously develop molecular and behavioral changes that mirror those seen in human aging. With age some degu, but not all individuals, develop cognitive decline and brain pathology like that observed in Alzheimer's disease including neuroinflammation, hyperphosphorylated tau and amyloid plaques, together with other co-morbidities associated with aging such as macular degeneration, cataracts, alterations in circadian rhythm, diabetes and atherosclerosis. Here we report the whole-genome sequencing and analysis of the degu genome, which revealed unique features and molecular adaptations consistent with aging and Alzheimer's disease. We identified single nucleotide polymorphisms in genes associated with Alzheimer's disease including a novel apolipoprotein E (Apoe) gene variant that correlated with an increase in amyloid plaques in brain and modified the in silico predicted degu APOE protein structure and functionality. The reported genome of an unconventional long-lived animal model of aging and Alzheimer's disease offers the opportunity for understanding molecular pathways involved in aging and should help advance biomedical research into treatments for Alzheimer's disease. - PublicationTheil entropy as a non-lineal analysis for spectral inequality of physiological oscillationsTheil entropy is a statistical measure used in economics to quantify income inequalities. However, it can be applied to any data distribution including biological signals. In this work, we applied different spectral methods on heart rate variability signals and cellular calcium oscillations previously to Theil entropy analysis. The behavior of Theil entropy and its decomposable property was investigated using exponents in the range of [−1, 2], on the spectrum of synthetic and physiological signals. Our results suggest that the best spectral decomposition method to analyze the spectral inequality of physiological oscillations is the Lomb–Scargle method, followed by Theil entropy analysis. Moreover, our results showed that the exponents that provide more information to describe the spectral inequality in the tested signals were zero, one, and two. It was also observed that the intra-band component is the one that contributes the most to total inequality for the studied oscillations. More in detail, we found that in the state of mental stress, the inequality determined by the Theil entropy analysis of heart rate increases with respect to the resting state. Likewise, the same analytical approach shows that cellular calcium oscillations present on developing interneurons display greater inequality distribution when inhibition of a neurotransmitter system is in place. In conclusion, we propose that Theil entropy is useful for analyzing spectral inequality and to explore its origin in physiological signals.
- PublicationGut Microbiota Interaction with the Central Nervous System throughout LifeDuring the last years, accumulating evidence has suggested that the gut microbiota plays a key role in the pathogenesis of neurodevelopmental and neurodegenerative diseases via the gut–brain axis. Moreover, current research has helped to elucidate different communication pathways between the gut microbiota and neural tissues (e.g., the vagus nerve, tryptophan production, extrinsic enteric-associated neurons, and short chain fatty acids). On the other hand, altering the composition of gut microbiota promotes a state known as dysbiosis, where the balance between helpful and pathogenic bacteria is disrupted, usually stimulating the last ones. Herein, we summarize selected findings of the recent literature concerning the gut microbiome on the onset and progression of neurodevelopmental and degenerative disorders, and the strategies to modulate its composition in the search for therapeutical approaches, focusing mainly on animal models studies. Readers are advised that this is a young field, based on early studies, that is rapidly growing and being updated as the field advances.
- PublicationMice lacking neuronal calcium sensor-1 show social and cognitive deficits(Elsevier, 2020)
;Ng, Enoch ;Georgiou, John; ;Trought, Kathleen ;Mun, Ho-Suk ;Hodgson, Meggie ;Servinis, Panayiotis ;Roder, John C. ;Collingridge, Graham L.Wong, Albert H.CNeuronal calcium sensor-1 or Frequenin is a calcium sensor widely expressed in the nervous system, with roles in neurotransmission, neurite outgrowth, synaptic plasticity, learning, and motivated behaviours. Neuronal calcium sensor-1 has been implicated in neuropsychiatric disorders including autism spectrum disorder, schizophrenia, and bipolar disorder. However, the role of neuronal calcium sensor-1 in behavioural phenotypes and brain changes relevant to autism spectrum disorder have not been evaluated. We show that neuronal calcium sensor-1 deletion in the mouse leads to a mild deficit in social approach and impaired displaced object recognition without affecting social interactions, behavioural flexibility, spatial reference memory, anxiety-like behaviour, or sensorimotor gating. Morphologically, neuronal calcium sensor-1 deletion leads to increased dendritic arbour complexity in the frontal cortex. At the level of hippocampal synaptic plasticity, neuronal calcium sensor-1 deletion leads to a reduction in long-term potentiation in the dentate gyrus, but not area Cornu Ammonis 1. Metabotropic glutamate receptor-induced long-term depression was unaffected in both dentate and Cornu Ammonis 1. These studies identify roles for neuronal calcium sensor-1 in specific subregions of the brain including a phenotype relevant to neuropsychiatric disorders.