Options
Dr. Valdes-Morales, Hector
Nombre de publicaciĂ³n
Dr. Valdes-Morales, Hector
Nombre completo
Valdes Morales, Hector
Facultad
Email
hvaldes@ucsc.cl
ORCID
3 results
Research Outputs
Now showing 1 - 3 of 3
- PublicationOxygen vacancies in nano-sized TiO2 anatase nanoparticles(Solid State Ionics, 2019)
;Drozd, Valeriya S. ;Zybina, Nadezhda A. ;Abramova, Kristina E. ;Parfenov, Mikhail Yu ;Kumar, Umesh; ;Smirniotis, Panagiotis G.Vorontsov, Alexander V.Anatase nanoparticles containing surface oxygen vacancies (VO) and Ti3+ are of great importance for applications in photocatalysis, batteries, catalysis, sensors among other uses. The properties of VO and their dependence on the size of nanoparticles are of great research interest and could allow obtaining advanced functional materials. In this work, a complete set of oxygen vacancies in an anatase nanoparticle of size 1.1 nm was investigated and compared to those of a twice larger nanoparticle, having the same shape and surface hydroxylation pattern. It turned out that the decrease in the size of the anatase nanoparticle strongly facilitated creation of surface oxygen vacancies and Ti3+. After their creation, oxygen vacancies undergo three transformation paths — (1) small repulsion of surrounding Ti cations with retention of the vacancy, (2) transfer of oxygen anion, leading to the movement of oxygen vacancy to a more stable position, and (3) collapse of oxygen vacancy accompanied by structure deformation towards Magneli-like phase. - PublicationQuantum size effect and visible light activity of anatase nanosheet quantum dots(Journal of Photochemistry and Photobiology a Chemistry, 2019)
;Vorontsov, Alexander V.Anatase (001)nanosheets have recently attracted great attention as very active catalysts and photocatalysts. These graphene analogs have very high surface area and unique surface properties. In the present paper, very thin two-layer anatase nanosheets are investigated computationally in the form of quantum dots of various size. Quantum size effect (QSE)was clearly observed for nanosheets with fully hydroxylated edges and size up to 14 nm and the ultimate band gap is around 3.4 eV. Dehydroxylation of nanosheets obscured QSE, decreased band gap and induced visible light absorption. Therefore, contradictory trends reported in experimental studies for anatase QSE can be ascribed to different degree of hydroxylation of the TiO 2 samples surface. All anatase nanosheet quantum dots retained their flat graphene-like shape. These findings demonstrate that dehydroxylated anatase nanosheet quantum dots are prospective visible-light active photocatalysts even if their inherent band gap is considerably larger than for bulk anatase. - PublicationSelf-assembled reduced graphene oxide-TiO2 nanocomposites: Synthesis, DFTB plus calculations, and enhanced photocatalytic reduction of CO2 to methanol(Carbon, 2019)
;Olowoyo, Joshua O. ;Kumar, Manoj ;Singh, Bhupender ;Oninla, Vincent O. ;Babalola, Jonathan O.; ;Vorontsov, Alexander V.Kumar, UmeshA facile combined method, namely sonothermal-hydrothermal, was adopted to assemble titanium dioxide (TiO2) nanoparticles on the surface of reduced graphene oxide (RGO) to form nanocomposites. Characterization techniques confirm that RGO-TiO2 composite is well constituted. Enhanced photocatalytic CO2 reduction to methanol by the composites under UVA and visible irradiation suggests the modification in the band gap of the composite and promotion of the separation of photogenerated carriers, yielding methanol production rate of 2.33 mmol g−1 h−1. Theoretical investigation demonstrated that combining RGO with TiO2 resulted in an upward shift of TiO2 bands by 0.2 V due to the contribution of RGO electrons. Relatively strong adsorption of RGO over the (101) anatase surface with the binding energy of approximately 0.4 kcal mol−1 per carbon atom was observed. Consideration of orbitals of TiO2, RGO and RGO-TiO2 composite led to a conclusion that UVA photoreaction proceeds via the traditional mechanism of photogenerated electron transfer to RGO while visible light CO2 reduction proceeds as a result of charge transfer photoexcitation that directly produces electrons in RGO and holes in TiO2. Superior photocatalytic activity of RGO-TiO2 composite in the present study is attributed to the formation of tight contact between its constituents, which is required for efficient electron and charge transfer.