Options
Self-assembled reduced graphene oxide-TiO2 nanocomposites: Synthesis, DFTB plus calculations, and enhanced photocatalytic reduction of CO2 to methanol
Olowoyo, Joshua O.
Kumar, Manoj
Singh, Bhupender
Oninla, Vincent O.
Babalola, Jonathan O.
Vorontsov, Alexander V.
Kumar, Umesh
Carbon
2019
A facile combined method, namely sonothermal-hydrothermal, was adopted to assemble titanium dioxide (TiO2) nanoparticles on the surface of reduced graphene oxide (RGO) to form nanocomposites. Characterization techniques confirm that RGO-TiO2 composite is well constituted. Enhanced photocatalytic CO2 reduction to methanol by the composites under UVA and visible irradiation suggests the modification in the band gap of the composite and promotion of the separation of photogenerated carriers, yielding methanol production rate of 2.33 mmol g−1 h−1. Theoretical investigation demonstrated that combining RGO with TiO2 resulted in an upward shift of TiO2 bands by 0.2 V due to the contribution of RGO electrons. Relatively strong adsorption of RGO over the (101) anatase surface with the binding energy of approximately 0.4 kcal mol−1 per carbon atom was observed. Consideration of orbitals of TiO2, RGO and RGO-TiO2 composite led to a conclusion that UVA photoreaction proceeds via the traditional mechanism of photogenerated electron transfer to RGO while visible light CO2 reduction proceeds as a result of charge transfer photoexcitation that directly produces electrons in RGO and holes in TiO2. Superior photocatalytic activity of RGO-TiO2 composite in the present study is attributed to the formation of tight contact between its constituents, which is required for efficient electron and charge transfer.
CO2 reduction
DFTB+ calculations
Photocatalysis
Sonothermal-hydrothermal
Ciencias químicas
Ingeniería de materiales