Research Outputs

Now showing 1 - 4 of 4
  • Thumbnail Image
    Publication
    TOI-3884 b: A rare 6-RE planet that transits a low-mass star with a giant and likely polar spot
    (EDP Sciences, 2022) ;
    Almenara, J.
    ;
    Bonfils, X.
    ;
    Forveille, T.
    ;
    Ciardi, D.
    ;
    Schwarz, R.
    ;
    Collins, K.
    ;
    Cointepas, M.
    ;
    Lund, M.
    ;
    Bouchy, F.
    ;
    Charbonneau, D.
    ;
    Díaz, R.
    ;
    Delfosse, X.
    ;
    Kidwell, R.
    ;
    Kunimoto, M.
    ;
    Latham, D.
    ;
    Lissauer, J.
    ;
    Murgas, F.
    ;
    Ricker, G.
    ;
    Seager, S.
    ;
    Vezie, M.
    ;
    Watanabe, D.
    The Transiting Exoplanet Survey Satellite mission identified a deep and asymmetric transit-like signal with a periodicity of 4.5 days orbiting the M4 dwarf star TOI-3884. The signal has been confirmed by follow-up observations collected by the ExTrA facility and Las Cumbres Observatory Global Telescope, which reveal that the transit is chromatic. The light curves are well modelled by a host star having a large polar spot transited by a 6-RE planet. We validate the planet with seeing-limited photometry, high-resolution imaging, and radial velocities. TOI-3884 b, with a radius of 6.00 ± 0.18 RE, is the first sub-Saturn planet transiting a mid-M dwarf. Owing to the host star’s brightness and small size, it has one of the largest transmission spectroscopy metrics for this planet size and becomes a top target for atmospheric characterisation with the James Webb Space Telescope and ground-based telescopes.
  • Thumbnail Image
    Publication
    A quarter century of spectroscopic monitoring of the nearby M dwarf Gl 514. A super-Earth on an eccentric orbit moving in and out of the habitable zone
    (Astronomy & Astrophysics, 2022) ;
    Damasso, M.
    ;
    Perger, M.
    ;
    Almenara, J.
    ;
    Nardiello, D.
    ;
    Pérez-Torres, M.
    ;
    Sozzetti, A.
    ;
    Hara, N.
    ;
    Quirrenbach, A.
    ;
    Bonfils, X.
    ;
    Zapatero Osorio, M.
    ;
    González-Hernández, J.
    ;
    Suárez-Mascareno, A.
    ;
    Amado, P. J.
    ;
    Forveille, T.
    ;
    Lillo-Box, J.
    ;
    Alibert, Y.
    ;
    Caballero, J.
    ;
    Cifuentes, C.
    ;
    Delfosse, X.
    ;
    Figueira, P.
    ;
    Galadí-Enríquez, D.
    ;
    Hatzes, A.
    ;
    Henning, Th.
    ;
    Kaminski, A.
    ;
    Mayor, M.
    ;
    Murgas, F.
    ;
    Montes, D.
    ;
    Pinamonti, M.
    ;
    Reiners, A.
    ;
    Ribas, I.
    ;
    Béjar, V.
    ;
    Schweitzer, A.
    ;
    Zechmeister, M.
    Context. Statistical analyses based on Kepler data show that most of the early-type M dwarfs host multi-planet systems consisting of Earth- to sub-Neptune-sized planets with orbital periods of up to ~250 days, and that at least one such planet is likely located within the habitable zone. M dwarfs are therefore primary targets to search for potentially habitable planets in the solar neighbourhood. Aims. We investigated the presence of planetary companions around the nearby (7.6 pc) and bright (V = 9 mag) early-type M dwarf Gl 514, analysing 540 radial velocities collected over nearly 25 yr with the HIRES, HARPS, and CARMENES spectrographs. Methods. The data are affected by time-correlated signals at the level of 2–3 m s−1 due to stellar activity, which we filtered out, testing three different models based on Gaussian process regression. As a sanity cross-check, we repeated the analyses using HARPS radial velocities extracted with three different algorithms. We used HIRES radial velocities and Hipparcos-Gaia astrometry to put constraints on the presence of long-period companions, and we analysed TESS photometric data. Results. We find strong evidence that Gl 514 hosts a super-Earth on a likely eccentric orbit, residing in the conservative habitable zone for nearly 34% of its orbital period. The planet Gl 514b has minimum mass mb sin ib = 5.2 ± 0.9 M⊕, orbital period Pb = 140.43 ± 0.41 days, and eccentricity eb = 0.45−0.14+0.15. No evidence for transits is found in the TESS light curve. There is no evidence for a longer period companion in the radial velocities and, based on astrometry, we can rule out a ~0.2 MJup planet at a distance of ~3–10 astronomical units, and massive giant planets and brown dwarfs out to several tens of astronomical units. We discuss the possible presence of a second low-mass companion at a shorter distance from the host than Gl 514 b. Conclusions. Gl 514 b represents an interesting science case for studying the habitability of planets on eccentric orbits. We advocate for additional spectroscopic follow-up to get more accurate and precise planetary parameters. Further follow-up is also needed to investigate the presence of additional planetary signals of less than 1 m s−1.
  • Thumbnail Image
    Publication
    TOI-4860 b, a short-period giant planet transiting an M3.5 dwarf
    (EDP ​​​​Sciences, 2024) ;
    Almenara, J.
    ;
    Bonfils, X.
    ;
    Bryant, E.
    ;
    Jordán, A.
    ;
    Hébrard, G.
    ;
    Martioli, E.
    ;
    Correia, A.
    ;
    Cadieux, C.
    ;
    Arnold, L.
    ;
    Artigau, É.
    ;
    Bakos, G.
    ;
    Barros, S.
    ;
    Bayliss, D.
    ;
    Bouchy, F.
    ;
    Boué, G.
    ;
    Brahm, R.
    ;
    Carmona, A.
    ;
    Charbonneau, D.
    ;
    Ciardi, D.
    ;
    Cloutier, R.
    ;
    Cointepas, M.
    ;
    Cook, N.
    ;
    Cowan, N.
    ;
    Delfosse, X.
    ;
    Dias do Nascimento, J.
    ;
    Donati, J.
    ;
    Doyon, R.
    ;
    Forveille, T.
    ;
    Fouqué, P.
    ;
    Gaidos, E.
    ;
    Gilbert, E.
    ;
    da Silva, J.
    ;
    Hartman, J.
    ;
    Hesse, K.
    ;
    Hobson, M.
    ;
    Jenkins, J.
    ;
    Kiefer, F.
    ;
    Kostov, V.
    ;
    Laskar, J.
    ;
    Lendl, M.
    ;
    L’Heureux, A.
    ;
    Martins, J.
    ;
    Menou, K.
    ;
    Moutou, C.
    ;
    Murgas, F.
    ;
    Polanski, A. S.
    ;
    Rapetti, D.
    ;
    Sedaghati, E.
    ;
    Shang, H.
    We report the discovery and characterisation of a giant transiting planet orbiting a nearby M3.5V dwarf (d = 80.4pc, G = 15.1 mag, K=11.2mag, R* = 0.358 ± 0.015 R⊙, M* = 0.340 ± 0.009 M⊙). Using the photometric time series from TESS sectors 10, 36, 46, and 63 and near-infrared spectrophotometry from ExTrA, we measured a planetary radius of 0.77 ± 0.03 RJ and an orbital period of 1.52 days. With high-resolution spectroscopy taken by the CFHT/SPIRou and ESO/ESPRESSO spectrographs, we refined the host star parameters ([Fe/H] = 0.27 ± 0.12) and measured the mass of the planet (0.273 ± 0.006 MJ). Based on these measurements, TOI-4860 b joins the small set of massive planets (>80 ME) found around mid to late M dwarfs (<0.4 R⊙), providing both an interesting challenge to planet formation theory and a favourable target for further atmospheric studies with transmission spectroscopy. We identified an additional signal in the radial velocity data that we attribute to an eccentric planet candidate (e = 0.66 ± 0.09) with an orbital period of 427 ± 7 days and a minimum mass of 1.66 ± 0.26 MJ, but additional data would be needed to confirm this.
  • Thumbnail Image
    Publication
    GJ 3090 b: One of the most favourable mini-Neptune for atmospheric characterisation
    (EDP Sciences, 2022) ;
    Almenara, J.
    ;
    Bonfils, X.
    ;
    Otegi, J.
    ;
    Attia, O.
    ;
    Turbet, M.
    ;
    Collins, K.
    ;
    Polanski, A.
    ;
    Bourrier, V.
    ;
    Hellier, C.
    ;
    Ziegler, C.
    ;
    Bouchy, F.
    ;
    Briceno, C.
    ;
    Charbonneau, D.
    ;
    Cointepas, M.
    ;
    Collins, K.
    ;
    Crossfield, I.
    ;
    Delfosse, X.
    ;
    Diaz, R.
    ;
    Dorn, C.
    ;
    Doty, J.
    ;
    Forveille, T.
    ;
    Gaisné, G.
    ;
    Gan, T.
    ;
    Helled, R.
    ;
    Hesse, K.
    ;
    Jenkins, J.
    ;
    Jensen, E.
    ;
    Latham, D.
    ;
    Law, N.
    ;
    Mann, A.
    ;
    Mao, S.
    ;
    McLean, B.
    ;
    Murgas, F.
    ;
    Myers, G.
    ;
    Seager, S.
    ;
    Shporer, A.
    ;
    Tan, T. G.
    ;
    Twicken, J.
    ;
    Winn, J.
    We report the detection of GJ 3090 b (TOI-177.01), a mini-Neptune on a 2.9-day orbit transiting a bright (K = 7.3 mag) M2 dwarf located at 22 pc. The planet was identified by the Transiting Exoplanet Survey Satellite and was confirmed with the High Accuracy Radial velocity Planet Searcher radial velocities. Seeing-limited photometry and speckle imaging rule out nearby eclipsing binaries. Additional transits were observed with the LCOGT, Spitzer, and ExTrA telescopes. We characterise the star to have a mass of 0.519 ± 0.013 M⊙ and a radius of 0.516 ± 0.016 R⊙. We modelled the transit light curves and radial velocity measurements and obtained a planetary mass of 3.34 ± 0.72 ME, a radius of 2.13 ± 0.11 RE, and a mean density of 1.89−0.45+0.52 g cm−3. The low density of the planet implies the presence of volatiles, and its radius and insolation place it immediately above the radius valley at the lower end of the mini-Neptune cluster. A coupled atmospheric and dynamical evolution analysis of the planet is inconsistent with a pure H–He atmosphere and favours a heavy mean molecular weight atmosphere. The transmission spectroscopy metric of 221−46+66 means that GJ 3090 b is the second or third most favorable mini-Neptune after GJ 1214 b whose atmosphere may be characterised. At almost half the mass of GJ 1214 b, GJ 3090 b is an excellent probe of the edge of the transition between super-Earths and mini-Neptunes. We identify an additional signal in the radial velocity data that we attribute to a planet candidate with an orbital period of 13 days and a mass of 17.1−3.2+8.9 ME, whose transits are not detected.