Options
Dr. Astudillo-Defru, Nicola
Nombre de publicación
Dr. Astudillo-Defru, Nicola
Nombre completo
Astudillo Defru, Nicola
Facultad
Email
nastudillo@ucsc.cl
ORCID
24 results
Research Outputs
Now showing 1 - 10 of 24
- PublicationTOI-663: A newly discovered multi-planet system with three transiting mini-Neptunes orbiting an early M star(EDP Sciences, 2024)
; ;Cointepas, M. ;Bouchy, F. ;Almenara, J. ;Bonfils, X. ;Knierim, H. ;Stalport, M. ;Mignon, L. ;Grieves, N. ;Bean, J. ;Brady, M. ;Burt, J. ;Canto-Martins, B. ;Collins, K. ;Collins, K. ;Delfosse, X. ;de Medeiros, J. ;Demory, B. ;Dorn, C. ;Forveille, T. ;Fukui, A. ;Gan, T. ;Gómez-Maqueo-Chew, Y. ;Halverson, S. ;Helled, R. ;Helm, I. ;Hirano, T. ;Horne, K. ;Howell, S. ;Isogai, K. ;Kasper, D. ;Kawauchi, K. ;Livingston, J. ;Massey, B. ;Matson, R. ;Murgas, F. ;Narita, N. ;Palle, E. ;Relles, H. ;Sabin, L. ;Schanche, N. ;Schwarz, R. ;Seifahrt, A. ;Shporer, A. ;Stefansson, G. ;Sturmer, J. ;Tamura, M. ;Tan, T. ;Twicken, J. ;Watanabe, N. ;Wells, R. ;Wilkin, F. ;Ricker, G. ;Seager, S. ;Winn, J.Jenkins, J.We present the detection of three exoplanets orbiting the early M dwarf TOI-663 (TIC 54962195; V = 13.7 mag, J = 10.4 mag, R★ = 0.512 ± 0.015 R⊙, M★ = 0.514 ± 0.012 M⊙, d = 64 pc). TOI-663 b, c, and d, with respective radii of 2.27 ± 0.10 R⊕, 2.26 ± 0.10 R⊕, and 1.92 ± 0.13 R⊕ and masses of 4.45 ± 0.65 M⊕, 3.65 ± 0.97 M⊕, and <5.2 M⊕ at 99%, are located just above the radius valley that separates rocky and volatile-rich exoplanets. The planet candidates are identified in two TESS sectors and are validated with ground-based photometric follow-up, precise radial-velocity measurements, and high-resolution imaging. We used the software package juliet to jointly model the photometric and radial-velocity datasets, with Gaussian processes applied to correct for systematics. The three planets discovered in the TOI-663 system are low-mass mini-Neptunes with radii significantly larger than those of rocky analogs, implying that volatiles, such as water, must predominate. In addition to this internal structure analysis, we also performed a dynamical analysis that confirmed the stability of the system. The three exoplanets in the TOI-663 system, similarly to other sub-Neptunes orbiting M dwarfs, have been found to have lower densities than planets of similar sizes orbiting stars of different spectral types. - PublicationTOI-4860 b, a short-period giant planet transiting an M3.5 dwarf(EDP Sciences, 2024)
; ;Almenara, J. ;Bonfils, X. ;Bryant, E. ;Jordán, A. ;Hébrard, G. ;Martioli, E. ;Correia, A. ;Cadieux, C. ;Arnold, L. ;Artigau, É. ;Bakos, G. ;Barros, S. ;Bayliss, D. ;Bouchy, F. ;Boué, G. ;Brahm, R. ;Carmona, A. ;Charbonneau, D. ;Ciardi, D. ;Cloutier, R. ;Cointepas, M. ;Cook, N. ;Cowan, N. ;Delfosse, X. ;Dias do Nascimento, J. ;Donati, J. ;Doyon, R. ;Forveille, T. ;Fouqué, P. ;Gaidos, E. ;Gilbert, E. ;da Silva, J. ;Hartman, J. ;Hesse, K. ;Hobson, M. ;Jenkins, J. ;Kiefer, F. ;Kostov, V. ;Laskar, J. ;Lendl, M. ;L’Heureux, A. ;Martins, J. ;Menou, K. ;Moutou, C. ;Murgas, F. ;Polanski, A. S. ;Rapetti, D. ;Sedaghati, E.Shang, H.We report the discovery and characterisation of a giant transiting planet orbiting a nearby M3.5V dwarf (d = 80.4pc, G = 15.1 mag, K=11.2mag, R* = 0.358 ± 0.015 R⊙, M* = 0.340 ± 0.009 M⊙). Using the photometric time series from TESS sectors 10, 36, 46, and 63 and near-infrared spectrophotometry from ExTrA, we measured a planetary radius of 0.77 ± 0.03 RJ and an orbital period of 1.52 days. With high-resolution spectroscopy taken by the CFHT/SPIRou and ESO/ESPRESSO spectrographs, we refined the host star parameters ([Fe/H] = 0.27 ± 0.12) and measured the mass of the planet (0.273 ± 0.006 MJ). Based on these measurements, TOI-4860 b joins the small set of massive planets (>80 ME) found around mid to late M dwarfs (<0.4 R⊙), providing both an interesting challenge to planet formation theory and a favourable target for further atmospheric studies with transmission spectroscopy. We identified an additional signal in the radial velocity data that we attribute to an eccentric planet candidate (e = 0.66 ± 0.09) with an orbital period of 427 ± 7 days and a minimum mass of 1.66 ± 0.26 MJ, but additional data would be needed to confirm this. - PublicationThe SOPHIE search for northern extrasolar planets. XIX. A system including a cold sub-Neptune potentially transiting a V = 6.5 star HD 88986(EDP Sciences, 2024)
; ;Heidari, N. ;Boisse, I. ;Hara, N. ;Wilson, T. ;Kiefer, F. ;Hébrard, G. ;Philipot, F. ;Hoyer, S. ;Stassun, K. ;Henry, G. ;Santos, N. ;Acuña, L. ;Almasian, D. ;Arnold, L. ;Attia, O. ;Bonfils, X. ;Bouchy, F. ;Bourrier, V. ;Collet, B. ;Cortés-Zuleta, P. ;Carmona, A. ;Delfosse, X. ;Dalal, S. ;Deleuil, M. ;Demangeon, O. ;Díaz, R. ;Dumusque, X. ;Ehrenreich, D. ;Forveille, T. ;Hobson, M. ;Jenkins, J. ;Jenkins, J. ;Lagrange, A. ;Latham, D. ;Larue, P. ;Liu, J. ;Moutou, C. ;Mignon, L. ;Osborn, H. ;Pepe, F. ;Rapetti, D. ;Rodrigues, J. ;Santerne, A. ;Segransan, D. ;Shporer, A. ;Sulis, S. ;Torres, G. ;Udry, S. ;Vakili, F. ;Vanderburg, A. ;Venot, O. ;Vivien, H.Vines, J.Transiting planets with orbital periods longer than 40 d are extremely rare among the 5000+ planets discovered so far. The lack of discoveries of this population poses a challenge to research into planetary demographics, formation, and evolution. Here, we present the detection and characterization of HD 88986 b, a potentially transiting sub-Neptune, possessing the longest orbital period among known transiting small planets (<4 R⊕) with a precise mass measurement (σM/M > 25%). Additionally, we identified the presence of a massive companion in a wider orbit around HD 88986. To validate this discovery, we used a combination of more than 25 yr of extensive radial velocity (RV) measurements (441 SOPHIE data points, 31 ELODIE data points, and 34 HIRES data points), Gaia DR3 data, 21 yr of photometric observations with the automatic photoelectric telescope (APT), two sectors of TESS data, and a 7-day observation of CHEOPS. Our analysis reveals that HD 88986 b, based on two potential single transits on sector 21 and sector 48 which are both consistent with the predicted transit time from the RV model, is potentially transiting. The joint analysis of RV and photometric data show that HD 88986 b has a radius of 2.49 ± 0.18 R⊕, a mass of 17.2−3.8+4.0 M⊕, and it orbits every 146.05−0.40+0.43 d around a subgiant HD 88986 which is one of the closest and brightest exoplanet host stars (G2Vtype, R = 1.543 ± 0.065 R⊙, V = 6.47 ± 0.01 mag, distance = 33.37 ± 0.04 pc). The nature of the outer, massive companion is still to be confirmed; a joint analysis of RVs, HIPPARCOS, and Gaia astrometric data shows that with a 3σ confidence interval, its semi-major axis is between 16.7 and 38.8 au and its mass is between 68 and 284 MJup. HD 88986 b’s wide orbit suggests the planet did not undergo significant mass loss due to extreme-ultraviolet radiation from its host star. Therefore, it probably maintained its primordial composition, allowing us to probe its formation scenario. Furthermore, the cold nature of HD 88986 b (460 ± 8 K), thanks to its long orbital period, will open up exciting opportunities for future studies of cold atmosphere composition characterization. Moreover, the existence of a massive companion alongside HD 88986 b makes this system an interesting case study for understanding planetary formation and evolution. - PublicationHot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS) VIII. Nondetection of sodium in the atmosphere of the aligned planet KELT-10b(Astronomy & Astrophysics, 2023)
;Steiner,M. ;Attia, O. ;Ehrenreich, D. ;Lendl, M. ;Bourrier, V. ;Lovis, C. ;Seidel, J. ;Sousa, S. ;Mounzer, D.; ;Bonfils, X. ;Bonvin, V. ;Dethier, W. ;Heng, K. ;Lavie, B. ;Melo, C. ;Ottoni, G. ;Pepe, F. ;Ségransan, D.Wyttenbach, A.Context. The HEARTS survey aims to probe the upper layers of the atmosphere by detecting resolved sodium doublet lines, a tracer of the temperature gradient, and atmospheric winds. KELT-10b, one of the targets of HEARTS, is a hot-inflated Jupiter with 1.4 RJup and 0.7 MJup. Recently, there was a report of sodium absorption in the atmosphere of KELT-10b (0.66% ± 0.09% (D2) and 0.43% ± 0.09% (D1); VLT/UVES data from single transit). Aims. We searched for potential atmospheric species in KELT-10b, focusing on sodium doublet lines (Na I; 589 nm) and the Balmer alpha line (H α; 656 nm) in the transmission spectrum. Furthermore, we measured the planet-orbital alignment with the spin of its host star. Methods. We used the Rossiter–McLaughlin Revolutions technique to analyze the local stellar lines occulted by the planet during its transit. We used the standard transmission spectroscopy method to probe the planetary atmosphere, including the correction for telluric lines and the Rossiter–McLaughlin effect on the spectra. We analyzed two new light curves jointly with the public photometry observations. Results. We do not detect signals in the Na I and H α lines within the uncertainty of our measurements. We derive the 3σ upper limit of excess absorption due to the planetary atmosphere corresponding to equivalent height Rp to 1.8Rp (Na I) and 1.9Rp (H α). The analysis of the Rossiter–McLaughlin effect yields the sky-projected spin-orbit angle of the system λ = −5.2 ± 3.4◦ and the stellar projected equatorial velocity veq sin i⋆ = 2.58 ± 0.12 km s−1. Photometry results are compatible within 1σ with previous studies. Conclusions. We found no evidence of Na I and H α, within the precision of our data, in the atmosphere of KELT-10b. Our detection limits allow us to rule out the presence of neutral sodium or excited hydrogen in an escaping extended atmosphere around KELT-10b. We cannot confirm the previous detection of Na I at lower altitudes with VLT/UVES. We note, however, that the Rossiter–McLaughlin effect impacts the transmission spectrum on a smaller scale than the previous detection with UVES. Analysis of the planet-occulted stellar lines shows the sky-projected alignment of the system, which is likely truly aligned due to tidal interactions of the planet with its cool (Teff < 6250 K) host star. - PublicationAn unusually low-density super-Earth transiting the bright early-type M-dwarf GJ 1018 (TOI-244)(EDP Sciences, 2023)
;Demangeon,O. ;Lillo-Box, J. ;Lovis, C. ;Lavie, B. ;Adibekyan, V. ;Acuña, L. ;Deleuil, M. ;Aguichine, A. ;Zapatero-Osorio, M. ;Tabernero, H. ;Davoult, J. ;Alibert, Y. ;Santos, N. ;Sousa, S. ;Antoniadis-Karnavas, A. ;Borsa, F. ;Winn, J. ;Allende-Prieto, C. ;Figueira, M ;Jenkins, J. ;Sozzetti, A. ;Damasso, M. ;Silva, A.; ;Barros, C. ;Bonfils, X. ;Cristiani, S. ;Di Marcantonio, P. ;González-Hernández, J. ;Lo Curto, G. ;Martins, C. ;Nunes, N. ;Palle, E. ;Pepe, F. ;Seager, S.Suárez-Mascareño, A.Context. Small planets located at the lower mode of the bimodal radius distribution are generally assumed to be composed of iron and silicates in a proportion similar to that of the Earth. However, recent discoveries are revealing a new group of low-density planets that are inconsistent with that description. Aims. We intend to confirm and characterize the TESS planet candidate TOI-244.01, which orbits the bright (K = 7.97 mag), nearby (d = 22 pc), and early-type (M2.5 V) M-dwarf star GJ 1018 with an orbital period of 7.4 days. Methods. We used Markov chain Monte Carlo methods to model 57 precise radial velocity measurements acquired by the ESPRESSO spectrograph together with TESS photometry and complementary HARPS data. Our model includes a planetary component and Gaussian processes aimed at modeling the correlated stellar and instrumental noise. Results. We find TOI-244 b to be a super-Earth with a radius of Rp = 1.52 ± 0.12 R⊕ and a mass of Mp = 2.68 ± 0.30 M⊕. These values correspond to a density of ρ = 4.2 ± 1.1 g cm−3, which is below what would be expected for an Earth-like composition. We find that atmospheric loss processes may have been efficient to remove a potential primordial hydrogen envelope, but high mean molecular weight volatiles such as water could have been retained. Our internal structure modeling suggests that TOI-244 b has a 479+128 −96 km thick hydrosphere over a 1.17 ± 0.09 R⊕ solid structure composed of a Fe-rich core and a silicate-dominated mantle compatible with that of the Earth. On a population level, we find two tentative trends in the density-metallicity and density-insolation parameter space for the low-density super-Earths, which may hint at their composition. Conclusions. With a 8% precision in radius and 12% precision in mass, TOI-244 b is among the most precisely characterized super-Earths, which, together with the likely presence of an extended hydrosphere, makes it a key target for atmospheric observations - PublicationCharacterisation of stellar activity of M dwarfs I. Long-timescale variability in a large sample and detection of new cycles(EDP Sciences, 2023)
;Mignon, L. ;Meunier, N. ;Delfosse, X. ;Bonfils, X. ;Santos, N. ;Forveille, T. ;Gaisné, G.; ;Lovis, C.Udry, S.Context. M dwarfs are active stars that exhibit variability in chromospheric emission and photometry at short and long timescales, including long cycles that are related to dynamo processes. This activity also impacts the search for exoplanets because it affects the radial velocities. Aims. We analysed a large sample of 177 M dwarfs observed with HARPS during the period 2003–2020 in order to characterise the long-term variability of these stars. We compared the variability obtained in three chromospheric activity indices (Ca II H & K, the Na D doublet, and Hα) and with ASAS photometry. Methods. We focused on the detailed analysis of the chromospheric emission based on linear, quadratic, and sinusoidal models. We used various tools to estimate the significance of the variability and to quantify the improvement brought by the models. In addition, we analysed complementary photometric time series for the most variable stars to be able to provide a broader view of the long-term variability in M dwarfs. Results. We find that most stars are significantly variable, even the quietest stars. Most stars in our sample (75%) exhibit a long-term variability, which manifests itself mostly through linear or quadratic variability, although the true behaviour may be more complex. We found significant variability with estimated timescales for 24 stars, and estimated the lower limit for a possible cycle period for an additional 9 stars that were not previously published. We found evidence of complex variability because more than one long-term timescale may be present for at least 12 stars, together with significant differences between the behaviour of the three activity indices. This complexity may also be the source of the discrepancies observed between previous publications. Conclusions. We conclude that long-term variability is present for all spectral types and activity level in M dwarfs, without a significant trend with spectral type or mean activity level. - PublicationTOI-3884 b: A rare 6-RE planet that transits a low-mass star with a giant and likely polar spot(EDP Sciences, 2022)
; ;Almenara, J. ;Bonfils, X. ;Forveille, T. ;Ciardi, D. ;Schwarz, R. ;Collins, K. ;Cointepas, M. ;Lund, M. ;Bouchy, F. ;Charbonneau, D. ;Díaz, R. ;Delfosse, X. ;Kidwell, R. ;Kunimoto, M. ;Latham, D. ;Lissauer, J. ;Murgas, F. ;Ricker, G. ;Seager, S. ;Vezie, M.Watanabe, D.The Transiting Exoplanet Survey Satellite mission identified a deep and asymmetric transit-like signal with a periodicity of 4.5 days orbiting the M4 dwarf star TOI-3884. The signal has been confirmed by follow-up observations collected by the ExTrA facility and Las Cumbres Observatory Global Telescope, which reveal that the transit is chromatic. The light curves are well modelled by a host star having a large polar spot transited by a 6-RE planet. We validate the planet with seeing-limited photometry, high-resolution imaging, and radial velocities. TOI-3884 b, with a radius of 6.00 ± 0.18 RE, is the first sub-Saturn planet transiting a mid-M dwarf. Owing to the host star’s brightness and small size, it has one of the largest transmission spectroscopy metrics for this planet size and becomes a top target for atmospheric characterisation with the James Webb Space Telescope and ground-based telescopes. - PublicationA quarter century of spectroscopic monitoring of the nearby M dwarf Gl 514. A super-Earth on an eccentric orbit moving in and out of the habitable zone(Astronomy & Astrophysics, 2022)
; ;Damasso, M. ;Perger, M. ;Almenara, J. ;Nardiello, D. ;Pérez-Torres, M. ;Sozzetti, A. ;Hara, N. ;Quirrenbach, A. ;Bonfils, X. ;Zapatero Osorio, M. ;González-Hernández, J. ;Suárez-Mascareno, A. ;Amado, P. J. ;Forveille, T. ;Lillo-Box, J. ;Alibert, Y. ;Caballero, J. ;Cifuentes, C. ;Delfosse, X. ;Figueira, P. ;Galadí-Enríquez, D. ;Hatzes, A. ;Henning, Th. ;Kaminski, A. ;Mayor, M. ;Murgas, F. ;Montes, D. ;Pinamonti, M. ;Reiners, A. ;Ribas, I. ;Béjar, V. ;Schweitzer, A.Zechmeister, M.Context. Statistical analyses based on Kepler data show that most of the early-type M dwarfs host multi-planet systems consisting of Earth- to sub-Neptune-sized planets with orbital periods of up to ~250 days, and that at least one such planet is likely located within the habitable zone. M dwarfs are therefore primary targets to search for potentially habitable planets in the solar neighbourhood. Aims. We investigated the presence of planetary companions around the nearby (7.6 pc) and bright (V = 9 mag) early-type M dwarf Gl 514, analysing 540 radial velocities collected over nearly 25 yr with the HIRES, HARPS, and CARMENES spectrographs. Methods. The data are affected by time-correlated signals at the level of 2–3 m s−1 due to stellar activity, which we filtered out, testing three different models based on Gaussian process regression. As a sanity cross-check, we repeated the analyses using HARPS radial velocities extracted with three different algorithms. We used HIRES radial velocities and Hipparcos-Gaia astrometry to put constraints on the presence of long-period companions, and we analysed TESS photometric data. Results. We find strong evidence that Gl 514 hosts a super-Earth on a likely eccentric orbit, residing in the conservative habitable zone for nearly 34% of its orbital period. The planet Gl 514b has minimum mass mb sin ib = 5.2 ± 0.9 M⊕, orbital period Pb = 140.43 ± 0.41 days, and eccentricity eb = 0.45−0.14+0.15. No evidence for transits is found in the TESS light curve. There is no evidence for a longer period companion in the radial velocities and, based on astrometry, we can rule out a ~0.2 MJup planet at a distance of ~3–10 astronomical units, and massive giant planets and brown dwarfs out to several tens of astronomical units. We discuss the possible presence of a second low-mass companion at a shorter distance from the host than Gl 514 b. Conclusions. Gl 514 b represents an interesting science case for studying the habitability of planets on eccentric orbits. We advocate for additional spectroscopic follow-up to get more accurate and precise planetary parameters. Further follow-up is also needed to investigate the presence of additional planetary signals of less than 1 m s−1. - PublicationGJ 3090 b: One of the most favourable mini-Neptune for atmospheric characterisation(EDP Sciences, 2022)
; ;Almenara, J. ;Bonfils, X. ;Otegi, J. ;Attia, O. ;Turbet, M. ;Collins, K. ;Polanski, A. ;Bourrier, V. ;Hellier, C. ;Ziegler, C. ;Bouchy, F. ;Briceno, C. ;Charbonneau, D. ;Cointepas, M. ;Collins, K. ;Crossfield, I. ;Delfosse, X. ;Diaz, R. ;Dorn, C. ;Doty, J. ;Forveille, T. ;Gaisné, G. ;Gan, T. ;Helled, R. ;Hesse, K. ;Jenkins, J. ;Jensen, E. ;Latham, D. ;Law, N. ;Mann, A. ;Mao, S. ;McLean, B. ;Murgas, F. ;Myers, G. ;Seager, S. ;Shporer, A. ;Tan, T. G. ;Twicken, J.Winn, J.We report the detection of GJ 3090 b (TOI-177.01), a mini-Neptune on a 2.9-day orbit transiting a bright (K = 7.3 mag) M2 dwarf located at 22 pc. The planet was identified by the Transiting Exoplanet Survey Satellite and was confirmed with the High Accuracy Radial velocity Planet Searcher radial velocities. Seeing-limited photometry and speckle imaging rule out nearby eclipsing binaries. Additional transits were observed with the LCOGT, Spitzer, and ExTrA telescopes. We characterise the star to have a mass of 0.519 ± 0.013 M⊙ and a radius of 0.516 ± 0.016 R⊙. We modelled the transit light curves and radial velocity measurements and obtained a planetary mass of 3.34 ± 0.72 ME, a radius of 2.13 ± 0.11 RE, and a mean density of 1.89−0.45+0.52 g cm−3. The low density of the planet implies the presence of volatiles, and its radius and insolation place it immediately above the radius valley at the lower end of the mini-Neptune cluster. A coupled atmospheric and dynamical evolution analysis of the planet is inconsistent with a pure H–He atmosphere and favours a heavy mean molecular weight atmosphere. The transmission spectroscopy metric of 221−46+66 means that GJ 3090 b is the second or third most favorable mini-Neptune after GJ 1214 b whose atmosphere may be characterised. At almost half the mass of GJ 1214 b, GJ 3090 b is an excellent probe of the edge of the transition between super-Earths and mini-Neptunes. We identify an additional signal in the radial velocity data that we attribute to a planet candidate with an orbital period of 13 days and a mass of 17.1−3.2+8.9 ME, whose transits are not detected. - PublicationDetailed stellar activity analysis and modelling of GJ 832. Reassessment of the putative habitable zone planet GJ 832c(Astronomy & Astrophysics, 2022)
;Gorrini, P.; ;Dreizler, S. ;Damasso, M. ;Díaz, R. F. ;Bonfils, X. ;Jeffers, S. V. ;Barnes, J. R. ;Del Sordo, F. ;Almenara, J.-M. ;Artigau, E. ;Bouchy, F. ;Charbonneau, D. ;Delfosse, X. ;Doyon, R. ;Figueira, P. ;Forveille, T. ;Haswell, C. A. ;López-González, M. J. ;Melo, C. ;Mennickent, R. E. ;Gaisné, G. ;Morales, N. ;Murgas, F. ;Pepe, F. ;Rodríguez, E. ;Santos, N. C. ;Tal-Or, L. ;Tsapras, Y.Udry, S.Context. Gliese-832 (GJ 832) is an M2V star hosting a massive planet on a decade-long orbit, GJ 832b, discovered by radial velocity (RV). Later, a super Earth or mini-Neptune orbiting within the stellar habitable zone was reported (GJ 832c). The recently determined stellar rotation period (45.7±9.3 days) is close to the orbital period of putative planet c (35.68±0.03 days). Aims. Weaimtoconfirmor dismiss the planetary nature of the RV signature attributed to GJ 832c, by adding 119 new RV data points, new photometric data, and an analysis of the spectroscopic stellar activity indicators. Additionally, we update the orbital parameters of the planetary system and search for additional signals. Methods. We performed a frequency content analysis of the RVs to search for periodic and stable signals. Radial velocity time series were modelled with Keplerians and Gaussian process (GP) regressions alongside activity indicators to subsequently compare them within a Bayesian framework. Results. We updated the stellar rotational period of GJ 832 from activity indicators, obtaining 37.5 +1.4 −1.5 days, improving the precision by a factor of 6. The new photometric data are in agreement with this value. We detected an RV signal near 18 days (FAP < 4.6%), which is half of the stellar rotation period. Two Keplerians alone fail at modelling GJ 832b and a second planet with a 35-day orbital period. Moreover, the Bayesian evidence from the GP analysis of the RV data with simultaneous activity indices prefers a model without a second Keplerian, therefore negating the existence of planet c.
- «
- 1 (current)
- 2
- 3
- »