Research Outputs

Now showing 1 - 10 of 17
  • Thumbnail Image
    Publication
    TOI-663: A newly discovered multi-planet system with three transiting mini-Neptunes orbiting an early M star
    (EDP ​​​​Sciences, 2024) ;
    Cointepas, M.
    ;
    Bouchy, F.
    ;
    Almenara, J.
    ;
    Bonfils, X.
    ;
    Knierim, H.
    ;
    Stalport, M.
    ;
    Mignon, L.
    ;
    Grieves, N.
    ;
    Bean, J.
    ;
    Brady, M.
    ;
    Burt, J.
    ;
    Canto-Martins, B.
    ;
    Collins, K.
    ;
    Collins, K.
    ;
    Delfosse, X.
    ;
    de Medeiros, J.
    ;
    Demory, B.
    ;
    Dorn, C.
    ;
    Forveille, T.
    ;
    Fukui, A.
    ;
    Gan, T.
    ;
    Gómez-Maqueo-Chew, Y.
    ;
    Halverson, S.
    ;
    Helled, R.
    ;
    Helm, I.
    ;
    Hirano, T.
    ;
    Horne, K.
    ;
    Howell, S.
    ;
    Isogai, K.
    ;
    Kasper, D.
    ;
    Kawauchi, K.
    ;
    Livingston, J.
    ;
    Massey, B.
    ;
    Matson, R.
    ;
    Murgas, F.
    ;
    Narita, N.
    ;
    Palle, E.
    ;
    Relles, H.
    ;
    Sabin, L.
    ;
    Schanche, N.
    ;
    Schwarz, R.
    ;
    Seifahrt, A.
    ;
    Shporer, A.
    ;
    Stefansson, G.
    ;
    Sturmer, J.
    ;
    Tamura, M.
    ;
    Tan, T.
    ;
    Twicken, J.
    ;
    Watanabe, N.
    ;
    Wells, R.
    ;
    Wilkin, F.
    ;
    Ricker, G.
    ;
    Seager, S.
    ;
    Winn, J.
    ;
    Jenkins, J.
    We present the detection of three exoplanets orbiting the early M dwarf TOI-663 (TIC 54962195; V = 13.7 mag, J = 10.4 mag, R★ = 0.512 ± 0.015 R⊙, M★ = 0.514 ± 0.012 M⊙, d = 64 pc). TOI-663 b, c, and d, with respective radii of 2.27 ± 0.10 R⊕, 2.26 ± 0.10 R⊕, and 1.92 ± 0.13 R⊕ and masses of 4.45 ± 0.65 M⊕, 3.65 ± 0.97 M⊕, and <5.2 M⊕ at 99%, are located just above the radius valley that separates rocky and volatile-rich exoplanets. The planet candidates are identified in two TESS sectors and are validated with ground-based photometric follow-up, precise radial-velocity measurements, and high-resolution imaging. We used the software package juliet to jointly model the photometric and radial-velocity datasets, with Gaussian processes applied to correct for systematics. The three planets discovered in the TOI-663 system are low-mass mini-Neptunes with radii significantly larger than those of rocky analogs, implying that volatiles, such as water, must predominate. In addition to this internal structure analysis, we also performed a dynamical analysis that confirmed the stability of the system. The three exoplanets in the TOI-663 system, similarly to other sub-Neptunes orbiting M dwarfs, have been found to have lower densities than planets of similar sizes orbiting stars of different spectral types.
  • Thumbnail Image
    Publication
    TOI-4860 b, a short-period giant planet transiting an M3.5 dwarf
    (EDP ​​​​Sciences, 2024) ;
    Almenara, J.
    ;
    Bonfils, X.
    ;
    Bryant, E.
    ;
    Jordán, A.
    ;
    Hébrard, G.
    ;
    Martioli, E.
    ;
    Correia, A.
    ;
    Cadieux, C.
    ;
    Arnold, L.
    ;
    Artigau, É.
    ;
    Bakos, G.
    ;
    Barros, S.
    ;
    Bayliss, D.
    ;
    Bouchy, F.
    ;
    Boué, G.
    ;
    Brahm, R.
    ;
    Carmona, A.
    ;
    Charbonneau, D.
    ;
    Ciardi, D.
    ;
    Cloutier, R.
    ;
    Cointepas, M.
    ;
    Cook, N.
    ;
    Cowan, N.
    ;
    Delfosse, X.
    ;
    Dias do Nascimento, J.
    ;
    Donati, J.
    ;
    Doyon, R.
    ;
    Forveille, T.
    ;
    Fouqué, P.
    ;
    Gaidos, E.
    ;
    Gilbert, E.
    ;
    da Silva, J.
    ;
    Hartman, J.
    ;
    Hesse, K.
    ;
    Hobson, M.
    ;
    Jenkins, J.
    ;
    Kiefer, F.
    ;
    Kostov, V.
    ;
    Laskar, J.
    ;
    Lendl, M.
    ;
    L’Heureux, A.
    ;
    Martins, J.
    ;
    Menou, K.
    ;
    Moutou, C.
    ;
    Murgas, F.
    ;
    Polanski, A. S.
    ;
    Rapetti, D.
    ;
    Sedaghati, E.
    ;
    Shang, H.
    We report the discovery and characterisation of a giant transiting planet orbiting a nearby M3.5V dwarf (d = 80.4pc, G = 15.1 mag, K=11.2mag, R* = 0.358 ± 0.015 R⊙, M* = 0.340 ± 0.009 M⊙). Using the photometric time series from TESS sectors 10, 36, 46, and 63 and near-infrared spectrophotometry from ExTrA, we measured a planetary radius of 0.77 ± 0.03 RJ and an orbital period of 1.52 days. With high-resolution spectroscopy taken by the CFHT/SPIRou and ESO/ESPRESSO spectrographs, we refined the host star parameters ([Fe/H] = 0.27 ± 0.12) and measured the mass of the planet (0.273 ± 0.006 MJ). Based on these measurements, TOI-4860 b joins the small set of massive planets (>80 ME) found around mid to late M dwarfs (<0.4 R⊙), providing both an interesting challenge to planet formation theory and a favourable target for further atmospheric studies with transmission spectroscopy. We identified an additional signal in the radial velocity data that we attribute to an eccentric planet candidate (e = 0.66 ± 0.09) with an orbital period of 427 ± 7 days and a minimum mass of 1.66 ± 0.26 MJ, but additional data would be needed to confirm this.
  • Thumbnail Image
    Publication
    The SOPHIE search for northern extrasolar planets. XIX. A system including a cold sub-Neptune potentially transiting a V = 6.5 star HD 88986
    (EDP ​​​​Sciences, 2024) ;
    Heidari, N.
    ;
    Boisse, I.
    ;
    Hara, N.
    ;
    Wilson, T.
    ;
    Kiefer, F.
    ;
    Hébrard, G.
    ;
    Philipot, F.
    ;
    Hoyer, S.
    ;
    Stassun, K.
    ;
    Henry, G.
    ;
    Santos, N.
    ;
    Acuña, L.
    ;
    Almasian, D.
    ;
    Arnold, L.
    ;
    Attia, O.
    ;
    Bonfils, X.
    ;
    Bouchy, F.
    ;
    Bourrier, V.
    ;
    Collet, B.
    ;
    Cortés-Zuleta, P.
    ;
    Carmona, A.
    ;
    Delfosse, X.
    ;
    Dalal, S.
    ;
    Deleuil, M.
    ;
    Demangeon, O.
    ;
    Díaz, R.
    ;
    Dumusque, X.
    ;
    Ehrenreich, D.
    ;
    Forveille, T.
    ;
    Hobson, M.
    ;
    Jenkins, J.
    ;
    Jenkins, J.
    ;
    Lagrange, A.
    ;
    Latham, D.
    ;
    Larue, P.
    ;
    Liu, J.
    ;
    Moutou, C.
    ;
    Mignon, L.
    ;
    Osborn, H.
    ;
    Pepe, F.
    ;
    Rapetti, D.
    ;
    Rodrigues, J.
    ;
    Santerne, A.
    ;
    Segransan, D.
    ;
    Shporer, A.
    ;
    Sulis, S.
    ;
    Torres, G.
    ;
    Udry, S.
    ;
    Vakili, F.
    ;
    Vanderburg, A.
    ;
    Venot, O.
    ;
    Vivien, H.
    ;
    Vines, J.
    Transiting planets with orbital periods longer than 40 d are extremely rare among the 5000+ planets discovered so far. The lack of discoveries of this population poses a challenge to research into planetary demographics, formation, and evolution. Here, we present the detection and characterization of HD 88986 b, a potentially transiting sub-Neptune, possessing the longest orbital period among known transiting small planets (<4 R⊕) with a precise mass measurement (σM/M > 25%). Additionally, we identified the presence of a massive companion in a wider orbit around HD 88986. To validate this discovery, we used a combination of more than 25 yr of extensive radial velocity (RV) measurements (441 SOPHIE data points, 31 ELODIE data points, and 34 HIRES data points), Gaia DR3 data, 21 yr of photometric observations with the automatic photoelectric telescope (APT), two sectors of TESS data, and a 7-day observation of CHEOPS. Our analysis reveals that HD 88986 b, based on two potential single transits on sector 21 and sector 48 which are both consistent with the predicted transit time from the RV model, is potentially transiting. The joint analysis of RV and photometric data show that HD 88986 b has a radius of 2.49 ± 0.18 R⊕, a mass of 17.2−3.8+4.0 M⊕, and it orbits every 146.05−0.40+0.43 d around a subgiant HD 88986 which is one of the closest and brightest exoplanet host stars (G2Vtype, R = 1.543 ± 0.065 R⊙, V = 6.47 ± 0.01 mag, distance = 33.37 ± 0.04 pc). The nature of the outer, massive companion is still to be confirmed; a joint analysis of RVs, HIPPARCOS, and Gaia astrometric data shows that with a 3σ confidence interval, its semi-major axis is between 16.7 and 38.8 au and its mass is between 68 and 284 MJup. HD 88986 b’s wide orbit suggests the planet did not undergo significant mass loss due to extreme-ultraviolet radiation from its host star. Therefore, it probably maintained its primordial composition, allowing us to probe its formation scenario. Furthermore, the cold nature of HD 88986 b (460 ± 8 K), thanks to its long orbital period, will open up exciting opportunities for future studies of cold atmosphere composition characterization. Moreover, the existence of a massive companion alongside HD 88986 b makes this system an interesting case study for understanding planetary formation and evolution.
  • Thumbnail Image
    Publication
    Optical and near-infrared stellar activity characterization of the early M dwarf Gl 205 with SOPHIE and SPIRou
    (Astronomy & Astrophysics, 2023)
    P. Cortés-Zuleta
    ;
    I. Boisse
    ;
    B. Klein
    ;
    E. Martioli
    ;
    P. I. Cristofari
    ;
    A. Antoniadis-Karnavas
    ;
    J.-F. Donati
    ;
    X. Delfosse
    ;
    C. Cadieux
    ;
    N. Heidari
    ;
    É. Artigau
    ;
    S. Bellotti
    ;
    X. Bonfils
    ;
    Y. Carmona
    ;
    N. J. Cook
    ;
    R. F. Díaz
    ;
    R. Doyon
    ;
    P. Fouqué
    ;
    C. Moutou
    ;
    P. Petit
    ;
    T. Vandal
    ;
    L. Acuña
    ;
    L. Arnold
    ;
    ;
    V. Bourrier
    ;
    F. Bouchy
    ;
    R. Cloutier
    ;
    S. Dalal
    ;
    M. Deleuil
    ;
    O. D. S. Demangeon
    ;
    X. Dumusque
    ;
    T. Forveille
    ;
    J. Gomes da Silva
    ;
    N. Hara
    ;
    G. Hébrard
    ;
    S. Hoyer
    ;
    G. Hussain
    ;
    F. Kiefer
    ;
    J. Morin
    ;
    A. Santerne
    ;
    N. C. Santos
    ;
    D. Segransan
    ;
    M. Stalport
    ;
    S. Udry
    The stellar activity of M dwarfs is the main limiting factor in the discovery and characterization of the exoplanets orbiting them, because it induces quasi-periodic radial velocity (RV) variations. Aims. We aim to characterize the magnetic field and stellar activity of the early, moderately active M dwarf Gl 205 in the optical and near-infrared (NIR) domains. Methods. We obtained high-precision quasi-simultaneous spectra in the optical and NIR with the SOPHIE spectrograph and SPIRou spectropolarimeter between 2019 and 2022. We computed the RVs from both instruments and the SPIRou Stokes V profiles. We used Zeeman–Doppler imaging (ZDI) to map the large-scale magnetic field over the time span of the observations. We studied the temporal behavior of optical and NIR RVs and activity indicators with the Lomb-Scargle periodogram and a quasi-periodic Gaussian process regression (GPR). In the NIR, we studied the equivalent width of Al I, Ti I, K I, Fe I, and He I. We modeled the activity-induced RV jitter using a multi-dimensional GPR with activity indicators as ancillary time series. Results. The optical and NIR RVs show similar scatter but NIR shows a more complex temporal evolution. We observe an evolution of the magnetic field topology from a poloidal dipolar field in 2019 to a dominantly toroidal field in 2022. We measured a stellar rotation period of Prot = 34.4 ± 0.5 days in the longitudinal magnetic field. Using ZDI, we measure the amount of latitudinal differential rotation (DR) shearing the stellar surface, yielding rotation periods of Peq = 32.0 ± 1.8 days at the stellar equator and Ppol = 45.5 ± 0.3 days at the poles. We observed inconsistencies in the periodicities of the activity indicators that could be explained by these DR values. The multi-dimensional GP modeling yields an RMS of the RV residuals down to the noise level of 3 m s−1 for both instruments while using Hα and the BIS in the optical and the full width at half maximum (FWHM) in the NIR as ancillary time series. Conclusions. The RV variations observed in Gl 205 are due to stellar activity, with a complex evolution and different expressions in the optical and NIR revealed thanks to an extensive follow-up. Spectropolarimetry remains the best technique to constrain the stellar rotation period over standard activity indicators, particularly for moderately active M dwarfs.
  • Thumbnail Image
    Publication
    TOI-3884 b: A rare 6-RE planet that transits a low-mass star with a giant and likely polar spot
    (EDP Sciences, 2022) ;
    Almenara, J.
    ;
    Bonfils, X.
    ;
    Forveille, T.
    ;
    Ciardi, D.
    ;
    Schwarz, R.
    ;
    Collins, K.
    ;
    Cointepas, M.
    ;
    Lund, M.
    ;
    Bouchy, F.
    ;
    Charbonneau, D.
    ;
    Díaz, R.
    ;
    Delfosse, X.
    ;
    Kidwell, R.
    ;
    Kunimoto, M.
    ;
    Latham, D.
    ;
    Lissauer, J.
    ;
    Murgas, F.
    ;
    Ricker, G.
    ;
    Seager, S.
    ;
    Vezie, M.
    ;
    Watanabe, D.
    The Transiting Exoplanet Survey Satellite mission identified a deep and asymmetric transit-like signal with a periodicity of 4.5 days orbiting the M4 dwarf star TOI-3884. The signal has been confirmed by follow-up observations collected by the ExTrA facility and Las Cumbres Observatory Global Telescope, which reveal that the transit is chromatic. The light curves are well modelled by a host star having a large polar spot transited by a 6-RE planet. We validate the planet with seeing-limited photometry, high-resolution imaging, and radial velocities. TOI-3884 b, with a radius of 6.00 ± 0.18 RE, is the first sub-Saturn planet transiting a mid-M dwarf. Owing to the host star’s brightness and small size, it has one of the largest transmission spectroscopy metrics for this planet size and becomes a top target for atmospheric characterisation with the James Webb Space Telescope and ground-based telescopes.
  • Thumbnail Image
    Publication
    A quarter century of spectroscopic monitoring of the nearby M dwarf Gl 514. A super-Earth on an eccentric orbit moving in and out of the habitable zone
    (Astronomy & Astrophysics, 2022) ;
    Damasso, M.
    ;
    Perger, M.
    ;
    Almenara, J.
    ;
    Nardiello, D.
    ;
    Pérez-Torres, M.
    ;
    Sozzetti, A.
    ;
    Hara, N.
    ;
    Quirrenbach, A.
    ;
    Bonfils, X.
    ;
    Zapatero Osorio, M.
    ;
    González-Hernández, J.
    ;
    Suárez-Mascareno, A.
    ;
    Amado, P. J.
    ;
    Forveille, T.
    ;
    Lillo-Box, J.
    ;
    Alibert, Y.
    ;
    Caballero, J.
    ;
    Cifuentes, C.
    ;
    Delfosse, X.
    ;
    Figueira, P.
    ;
    Galadí-Enríquez, D.
    ;
    Hatzes, A.
    ;
    Henning, Th.
    ;
    Kaminski, A.
    ;
    Mayor, M.
    ;
    Murgas, F.
    ;
    Montes, D.
    ;
    Pinamonti, M.
    ;
    Reiners, A.
    ;
    Ribas, I.
    ;
    Béjar, V.
    ;
    Schweitzer, A.
    ;
    Zechmeister, M.
    Context. Statistical analyses based on Kepler data show that most of the early-type M dwarfs host multi-planet systems consisting of Earth- to sub-Neptune-sized planets with orbital periods of up to ~250 days, and that at least one such planet is likely located within the habitable zone. M dwarfs are therefore primary targets to search for potentially habitable planets in the solar neighbourhood. Aims. We investigated the presence of planetary companions around the nearby (7.6 pc) and bright (V = 9 mag) early-type M dwarf Gl 514, analysing 540 radial velocities collected over nearly 25 yr with the HIRES, HARPS, and CARMENES spectrographs. Methods. The data are affected by time-correlated signals at the level of 2–3 m s−1 due to stellar activity, which we filtered out, testing three different models based on Gaussian process regression. As a sanity cross-check, we repeated the analyses using HARPS radial velocities extracted with three different algorithms. We used HIRES radial velocities and Hipparcos-Gaia astrometry to put constraints on the presence of long-period companions, and we analysed TESS photometric data. Results. We find strong evidence that Gl 514 hosts a super-Earth on a likely eccentric orbit, residing in the conservative habitable zone for nearly 34% of its orbital period. The planet Gl 514b has minimum mass mb sin ib = 5.2 ± 0.9 M⊕, orbital period Pb = 140.43 ± 0.41 days, and eccentricity eb = 0.45−0.14+0.15. No evidence for transits is found in the TESS light curve. There is no evidence for a longer period companion in the radial velocities and, based on astrometry, we can rule out a ~0.2 MJup planet at a distance of ~3–10 astronomical units, and massive giant planets and brown dwarfs out to several tens of astronomical units. We discuss the possible presence of a second low-mass companion at a shorter distance from the host than Gl 514 b. Conclusions. Gl 514 b represents an interesting science case for studying the habitability of planets on eccentric orbits. We advocate for additional spectroscopic follow-up to get more accurate and precise planetary parameters. Further follow-up is also needed to investigate the presence of additional planetary signals of less than 1 m s−1.
  • Thumbnail Image
    Publication
    GJ 3090 b: One of the most favourable mini-Neptune for atmospheric characterisation
    (EDP Sciences, 2022) ;
    Almenara, J.
    ;
    Bonfils, X.
    ;
    Otegi, J.
    ;
    Attia, O.
    ;
    Turbet, M.
    ;
    Collins, K.
    ;
    Polanski, A.
    ;
    Bourrier, V.
    ;
    Hellier, C.
    ;
    Ziegler, C.
    ;
    Bouchy, F.
    ;
    Briceno, C.
    ;
    Charbonneau, D.
    ;
    Cointepas, M.
    ;
    Collins, K.
    ;
    Crossfield, I.
    ;
    Delfosse, X.
    ;
    Diaz, R.
    ;
    Dorn, C.
    ;
    Doty, J.
    ;
    Forveille, T.
    ;
    Gaisné, G.
    ;
    Gan, T.
    ;
    Helled, R.
    ;
    Hesse, K.
    ;
    Jenkins, J.
    ;
    Jensen, E.
    ;
    Latham, D.
    ;
    Law, N.
    ;
    Mann, A.
    ;
    Mao, S.
    ;
    McLean, B.
    ;
    Murgas, F.
    ;
    Myers, G.
    ;
    Seager, S.
    ;
    Shporer, A.
    ;
    Tan, T. G.
    ;
    Twicken, J.
    ;
    Winn, J.
    We report the detection of GJ 3090 b (TOI-177.01), a mini-Neptune on a 2.9-day orbit transiting a bright (K = 7.3 mag) M2 dwarf located at 22 pc. The planet was identified by the Transiting Exoplanet Survey Satellite and was confirmed with the High Accuracy Radial velocity Planet Searcher radial velocities. Seeing-limited photometry and speckle imaging rule out nearby eclipsing binaries. Additional transits were observed with the LCOGT, Spitzer, and ExTrA telescopes. We characterise the star to have a mass of 0.519 ± 0.013 M⊙ and a radius of 0.516 ± 0.016 R⊙. We modelled the transit light curves and radial velocity measurements and obtained a planetary mass of 3.34 ± 0.72 ME, a radius of 2.13 ± 0.11 RE, and a mean density of 1.89−0.45+0.52 g cm−3. The low density of the planet implies the presence of volatiles, and its radius and insolation place it immediately above the radius valley at the lower end of the mini-Neptune cluster. A coupled atmospheric and dynamical evolution analysis of the planet is inconsistent with a pure H–He atmosphere and favours a heavy mean molecular weight atmosphere. The transmission spectroscopy metric of 221−46+66 means that GJ 3090 b is the second or third most favorable mini-Neptune after GJ 1214 b whose atmosphere may be characterised. At almost half the mass of GJ 1214 b, GJ 3090 b is an excellent probe of the edge of the transition between super-Earths and mini-Neptunes. We identify an additional signal in the radial velocity data that we attribute to a planet candidate with an orbital period of 13 days and a mass of 17.1−3.2+8.9 ME, whose transits are not detected.
  • Thumbnail Image
    Publication
    Detailed stellar activity analysis and modelling of GJ 832. Reassessment of the putative habitable zone planet GJ 832c
    (Astronomy & Astrophysics, 2022)
    Gorrini, P.
    ;
    ;
    Dreizler, S.
    ;
    Damasso, M.
    ;
    Díaz, R. F.
    ;
    Bonfils, X.
    ;
    Jeffers, S. V.
    ;
    Barnes, J. R.
    ;
    Del Sordo, F.
    ;
    Almenara, J.-M.
    ;
    Artigau, E.
    ;
    Bouchy, F.
    ;
    Charbonneau, D.
    ;
    Delfosse, X.
    ;
    Doyon, R.
    ;
    Figueira, P.
    ;
    Forveille, T.
    ;
    Haswell, C. A.
    ;
    López-González, M. J.
    ;
    Melo, C.
    ;
    Mennickent, R. E.
    ;
    Gaisné, G.
    ;
    Morales, N.
    ;
    Murgas, F.
    ;
    Pepe, F.
    ;
    Rodríguez, E.
    ;
    Santos, N. C.
    ;
    Tal-Or, L.
    ;
    Tsapras, Y.
    ;
    Udry, S.
    Context. Gliese-832 (GJ 832) is an M2V star hosting a massive planet on a decade-long orbit, GJ 832b, discovered by radial velocity (RV). Later, a super Earth or mini-Neptune orbiting within the stellar habitable zone was reported (GJ 832c). The recently determined stellar rotation period (45.7±9.3 days) is close to the orbital period of putative planet c (35.68±0.03 days). Aims. Weaimtoconfirmor dismiss the planetary nature of the RV signature attributed to GJ 832c, by adding 119 new RV data points, new photometric data, and an analysis of the spectroscopic stellar activity indicators. Additionally, we update the orbital parameters of the planetary system and search for additional signals. Methods. We performed a frequency content analysis of the RVs to search for periodic and stable signals. Radial velocity time series were modelled with Keplerians and Gaussian process (GP) regressions alongside activity indicators to subsequently compare them within a Bayesian framework. Results. We updated the stellar rotational period of GJ 832 from activity indicators, obtaining 37.5 +1.4 −1.5 days, improving the precision by a factor of 6. The new photometric data are in agreement with this value. We detected an RV signal near 18 days (FAP < 4.6%), which is half of the stellar rotation period. Two Keplerians alone fail at modelling GJ 832b and a second planet with a 35-day orbital period. Moreover, the Bayesian evidence from the GP analysis of the RV data with simultaneous activity indices prefers a model without a second Keplerian, therefore negating the existence of planet c.
  • Thumbnail Image
    Publication
    TOI-674b: An oasis in the desert of exo-Neptunes transiting a nearby M dwarf
    (EDP Sciences, 2021) ;
    Murgas, F.
    ;
    Bonfils, X.
    ;
    Crossfield, I.
    ;
    Almenara, J.
    ;
    Livingston, J.
    ;
    Stassun, K.
    ;
    Korth, J.
    ;
    Orell-Miquel, J.
    ;
    Morello, G.
    ;
    Eastman, J.
    ;
    Lissauer, J.
    ;
    Kane, S.
    ;
    Morales, F.
    ;
    Werner, M.
    ;
    Gorjian, V.
    ;
    Benneke, B.
    ;
    Dragomir, D.
    ;
    Matthews, E.
    ;
    Howell, S.
    ;
    Ciardi, D.
    ;
    Gonzales, E.
    ;
    Matson, R.
    ;
    Beichman, C.
    ;
    Schlieder, J.
    ;
    Collins, K.
    ;
    Collins, K.
    ;
    Jensen, E.
    ;
    Evans, P.
    ;
    Pozuelos, F.
    ;
    Gillon, M.
    ;
    Jehin, E.
    ;
    Barkaoui, K.
    ;
    Artigau, E.
    ;
    Bouchy, F.
    ;
    Charbonneau, D.
    ;
    Delfosse, X.
    ;
    Díaz, R.
    ;
    Doyon, R.
    ;
    Figueira, P.
    ;
    Forveille, T.
    ;
    Lovis, C.
    ;
    Melo, C.
    ;
    Gaisné, G.
    ;
    Pepe, F.
    ;
    Santos, N.
    ;
    Ségransan, D.
    ;
    Udry, S.
    ;
    Goeke, R.
    ;
    Levine, A.
    ;
    Quintana, E.
    ;
    Guerrero, N.
    ;
    Mireles, I.
    ;
    Caldwell, D.
    ;
    Tenenbaum, P.
    ;
    Brasseur, C.
    ;
    Ricker, G.
    ;
    Vanderspek, R.
    ;
    Latham, D.
    ;
    Seager, S.
    ;
    Winn, J.
    ;
    Jenkins, J.
    Context. The NASA mission TESS is currently doing an all-sky survey from space to detect transiting planets around bright stars. As part of the validation process, the most promising planet candidates need to be confirmed and characterized using follow-up observations. Aims. In this article, our aim is to confirm the planetary nature of the transiting planet candidate TOI-674b using spectroscopic and photometric observations. Methods. We use TESS, Spitzer, ground-based light curves, and HARPS spectrograph radial velocity measurements to establish the physical properties of the transiting exoplanet candidate TOI-674b. We perform a joint fit of the light curves and radial velocity time series to measure the mass, radius, and orbital parameters of the candidate. Results. We confirm and characterize TOI-674b, a low-density super-Neptune transiting a nearby M dwarf. The host star (TIC 158588995, V = 14.2 mag, J = 10.3 mag) is characterized by its M2V spectral type with M⋆ = 0.420 ± 0.010 M⊙, R⋆ = 0.420 ± 0.013 R⊙, and Teff = 3514 ± 57 K; it is located at a distance d = 46.16 ± 0.03 pc. Combining the available transit light curves plus radial velocity measurements and jointly fitting a circular orbit model, we find an orbital period of 1.977143 ± 3 × 10−6 days, a planetary radius of 5.25 ± 0.17 R⊕, and a mass of 23.6 ± 3.3 M⊕ implying a mean density of ρp =0.91 ± 0.15 g cm−3. A non-circular orbit model fit delivers similar planetary mass and radius values within the uncertainties. Given the measured planetary radius and mass, TOI-674b is one of the largest and most massive super-Neptune class planets discovered around an M-type star to date. It is found in the Neptunian desert, and is a promising candidate for atmospheric characterization using the James Webb Space Telescope.
  • Thumbnail Image
    Publication
    The SOPHIE search for northern extrasolar planets. XVII. A wealth of new objects: Six cool Jupiters, three brown dwarfs, and 16 low-mass binary stars
    (EDP Sciences, 2021) ;
    Dalal, S.
    ;
    Kiefer, F.
    ;
    Hébrard, G.
    ;
    Sahlmann, J.
    ;
    Sousa, S.
    ;
    Forveille, T.
    ;
    Delfosse, X.
    ;
    Arnold, L.
    ;
    Bonfils, X.
    ;
    Boisse, I.
    ;
    Bouchy, F.
    ;
    Bourrier, V.
    ;
    Brugger, B.
    ;
    Cortés-Zuleta, P.
    ;
    Deleuil, M.
    ;
    Demangeon, O.
    ;
    Díaz, R.
    ;
    Hara, N.
    ;
    Heidari, N.
    ;
    Hobson, J.
    ;
    Lopez, T.
    ;
    Lovis, C.
    ;
    Martioli, E.
    ;
    Mignon, L.
    ;
    Mousis, O.
    ;
    Moutou, C.
    ;
    Rey, J.
    ;
    Santerne, A.
    ;
    Santos, N.
    ;
    Ségransan, D.
    ;
    Strøm, P.
    ;
    Udry, S.
    Distinguishing classes within substellar objects and understanding their formation and evolution need larger samples of substellar companions such as exoplanets, brown dwarfs, and low-mass stars. In this paper, we look for substellar companions using radial velocity surveys of FGK stars with the SOPHIE spectrograph at the Observatoire de Haute-Provence. We assign here the radial velocity variations of 27 stars to their orbital motion induced by low-mass companions. We also constrained their plane-of-the-sky motion using HIPPARCOS and Gaia Data Release 1 measurements, which constrain the true masses of some of these companions. We report the detection and characterization of six cool Jupiters, three brown dwarf candidates, and 16 low-mass stellar companions. We additionally update the orbital parameters of the low-mass star HD 8291 B, and we conclude that the radial velocity variations of HD 204277 are likely due to stellar activity despite resembling the signal of a giant planet. One of the new giant planets, BD+631405 b, adds to the population of highly eccentric cool Jupiters, and it is presently the most massive member. Two of the cool Jupiter systems also exhibit signatures of an additional outer companion. The orbital periods of the new companions span 30 days to 11.5 yr, their masses 0.72 MJ–0.61 M, and their eccentricities 0.04–0.88. These discoveries probe the diversity of substellar objects and low-mass stars, which will help constrain the models of their formation and evolution.