Research Outputs

Now showing 1 - 10 of 11
  • Publication
    The Atacama Cosmology Telescope: Quantifying atmospheric emission above Cerro Toco
    (American Physical Society, 2025)
    Morris, Thomas W
    ;
    Battistelli, Elia
    ;
    ;
    Choi, Steve K
    ;
    Duivenvoorden, Adriaan J
    ;
    Dunkley, Jo
    ;
    Dünner, Rolando
    ;
    Halpern, Mark
    ;
    Guan, Yilun
    ;
    van Marrewijk, Joshiwa
    ;
    Mroczkowski, Tony
    ;
    Naess, Sigurd
    ;
    Niemack, Michael D
    ;
    Page, Lyman A
    ;
    Partridge, Bruce
    ;
    Puddu, Roberto
    ;
    Salatino, Maria
    ;
    Sifón, Cristóbal
    ;
    Wang, Yuhan
    ;
    Wollack, Edward J
    At frequencies below 1 Hz, fluctuations in atmospheric emission in the Chajnantor region in northern Chile are the primary source of interference for bolometric millimeter-wave observations. This paper focuses on characterizing the statistics of these fluctuations using measurements from the Atacama Cosmology Telescope (ACT) and the Atacama Pathfinder Experiment (APEX) water vapor radiometer. We show that the total precipitable water vapor (PWV) is not in general an accurate estimator of the level of fluctuations in millimeter-wave atmospheric emission. We also show that the microwave frequency spectrum of atmospheric fluctuations is in good agreement with predictions by the am code for frequency bands above 90 GHz. We introduce a new method for separating atmospheric and systematic fluctuations, allowing us to fit a robust atmospheric flat field, as well as to study in the atmosphere in greater detail than previous works. We present a direct measurement of the temporal outer scale of turbulence of 𝜏0 ≈50  s corresponding to a spatial scale of 𝐿0 ≈500  m. Lastly, we show the variance of fluctuations in ACT’s mm-wave bands correlate with the variance of fluctuations in PWV measured by APEX, even though the observatories are 6 km apart and observe different lines of sight.
  • Thumbnail Image
    Publication
    A Measurement of the Largest-scale CMB E-mode Polarization with CLASS
    (American Astronomical Society, 2025)
    云炀 Li 李, Yunyang
    ;
    Eimer, Joseph R.
    ;
    Appel, John W.
    ;
    Bennett, Charles L.
    ;
    Brewer, Michael K.
    ;
    Bruno, Sarah Marie
    ;
    ;
    Chan, Carol Yan Yan
    ;
    Chuss, David T.
    ;
    Cleary, Joseph
    ;
    Dahal, Sumit
    ;
    Datta, Rahul
    ;
    Couto, Jullianna Denes
    ;
    Denis, Kevin L.
    ;
    Dünner, Rolando
    ;
    Essinger-Hileman, Thomas
    ;
    Harrington, Kathleen
    ;
    Helson, Kyle
    ;
    Hubmayr, Johannes
    ;
    Iuliano, Jeffrey
    ;
    Karakla, John
    ;
    Marriage, Tobias A.
    ;
    Miller, Nathan J.
    ;
    Morales Perez, Carolina
    ;
    Parker, Lucas P.
    ;
    Petroff, Matthew A.
    ;
    Reeves, Rodrigo A.
    ;
    Rostem, Karwan
    ;
    Ryan, Caleigh
    ;
    Shi 时, Rui 瑞
    ;
    Shukawa, Koji
    ;
    N. Valle, Deniz A.
    ;
    Watts, Duncan J.
    ;
    Weiland, Janet L.
    ;
    Wollack, Edward J.
    ;
    Xu 徐, Zhilei 智磊
    ;
    Zeng, Lingzhen
    We present measurements of large-scale cosmic microwave background E-mode polarization from the Cosmology Large Angular Scale Surveyor 90 GHz data. Using 115 det-yr of observations collected through 2024 with a variable-delay polarization modulator, we achieved a polarization sensitivity of 82 mu Karcmin , comparable to Planck at similar frequencies (100 and 143 GHz ). The analysis demonstrates effective mitigation of systematic errors and addresses challenges to large-angular-scale power recovery posed by time-domain filtering in maximum-likelihood map-making. A novel implementation of the pixel-space transfer matrix is introduced, which enables efficient filtering simulations and bias correction in the power spectrum using the quadratic cross-spectrum estimator. Overall, we achieved an unbiased time-domain filtering correction to recover the largest angular scale polarization, with the only power deficit, arising from map-making nonlinearity, being characterized as <3%. Through cross-correlation with Planck, we detected the cosmic reionization at 99.4% significance and measured the reionization optical depth tau=0.053(-0.019)(+0.018) , marking the first ground-based attempt at such a measurement. At intermediate angular scales (& ell; > 30), our results, both independently and in cross-correlation with Planck, remain fully consistent with Planck's measurements.
  • Thumbnail Image
    Publication
    CLASS angular power spectra and map-component analysis for 40 GHz observations through 2022
    (IOP Publishing, 2024) ;
    Eimer, Joseph
    ;
    Li, Yunyang
    ;
    Brewer, Michael
    ;
    Shi, Rui
    ;
    Ali, Aamir
    ;
    Appel, John
    ;
    Bennett, Charles
    ;
    Bruno, Sarah
    ;
    Chuss, David
    ;
    Cleary, Joseph
    ;
    Dahal, Sumit
    ;
    Datta, Rahul
    ;
    Denes-Couto, Jullianna
    ;
    Denis, Kevin
    ;
    Dünner, Rolando
    ;
    Essinger-Hileman, Thomas
    ;
    Fluxá, Pedro
    ;
    Hubmayer, Johannes
    ;
    Harrington, Kathleen
    ;
    Iuliano, Jeffrey
    ;
    Karakla, John
    ;
    Marriage, Tobias
    ;
    Núñez, Carolina
    ;
    Parker, Lucas
    ;
    Petroff, Matthew
    ;
    Reeves, Rodrigo
    ;
    Rostem, Karwan
    ;
    Valle, Deniz
    ;
    Watts, Duncan
    ;
    Weiland, Janet
    ;
    Wollack, Edward
    ;
    Xu, Zhilei
    ;
    Zeng, Lingzhen
    Measurement of the largest angular scale (ℓ < 30) features of the cosmic microwave background (CMB) polarization is a powerful way to constrain the optical depth to reionization and search for the signature of inflation through the detection of primordial B-modes. We present an analysis of maps covering 73.6% of the sky made from the 40 GHz channel of the Cosmology Large Angular Scale Surveyor (CLASS) from 2016 August to 2022 May. Taking advantage of the measurement stability enabled by front-end polarization modulation and excellent conditions from the Atacama Desert, we show this channel achieves higher sensitivity than the analogous frequencies from satellite measurements in the range 10 < ℓ < 100. Simulations show the CLASS linear (circular) polarization maps have a white noise level of 125(130) uK arcmin. We measure the Galaxy-masked EE and BB spectra of diffuse synchrotron radiation and compare to space-based measurements at similar frequencies. In combination with external data, we expand measurements of the spatial variations of the synchrotron spectral energy density (SED) to include new sky regions and measure the diffuse SED in the harmonic domain. We place a new upper limit on a background of circular polarization in the range 5 < ℓ < 125 with the first bin showing Dℓ < 0.023 uK2CMB at 95% confidence. These results establish a new standard for recovery of the largest-scale CMB polarization from the ground and signal exciting possibilities when the higher sensitivity and higher-frequency CLASS channels are included in the analysis.
  • Thumbnail Image
    Publication
    CLASS observations of atmospheric cloud polarization at millimeter wavelengths
    (IOP Publishing, 2023) ;
    Li, Yunyang
    ;
    Appel, John
    ;
    Bennett, Charles
    ;
    Chuss, David
    ;
    Cleary, Joseph
    ;
    Couto, Jullianna
    ;
    Dahal, Sumit
    ;
    Datta, Rahul
    ;
    Dünner, Rolando
    ;
    Eimer, Joseph
    ;
    Essinger-Hileman, Thomas
    ;
    Harrington, Kathleen
    ;
    Iuliano, Jeffrey
    ;
    Marriage, Tobias
    ;
    Petroff, Matthew
    ;
    Reeves, Rodrigo
    ;
    Rostem, Karwan
    ;
    Shi, Rui
    ;
    Valle, Deniz
    ;
    Watts, Duncan
    ;
    Wolff, Oliver
    ;
    Wollack, Edward
    ;
    Xu, Zhilei
    The dynamic atmosphere imposes challenges to ground-based cosmic microwave background observation, especially for measurements on large angular scales. The hydrometeors in the atmosphere, mostly in the form of clouds, scatter the ambient thermal radiation and are known to be the main linearly polarized source in the atmosphere. This scattering-induced polarization is significantly enhanced for ice clouds due to the alignment of ice crystals under gravity, which are also the most common clouds seen at the millimeter-astronomy sites at high altitudes. This work presents a multifrequency study of cloud polarization observed by the Cosmology Large Angular Scale Surveyor experiment on Cerro Toco in the Atacama Desert of northern Chile, from 2016–2022, at the frequency bands centered around 40, 90, 150, and 220 GHz. Using a machine-learning-assisted cloud classifier, we made connections between the transient polarized emission found in all four frequencies with the clouds imaged by monitoring cameras at the observing site. The polarization angles of the cloud events are found to be mostly 90° from the local meridian, which is consistent with the presence of horizontally aligned ice crystals. The 90 and 150 GHz polarization data are consistent with a power law with a spectral index of 3.90 ± 0.06, while an excess/deficit of polarization amplitude is found at 40/220 GHz compared with a Rayleigh scattering spectrum. These results are consistent with Rayleigh-scattering-dominated cloud polarization, with possible effects from supercooled water absorption and/or Mie scattering from a population of large cloud particles that contribute to the 220 GHz polarization.
  • Thumbnail Image
    Publication
    The Atacama Cosmology Telescope: Modeling bulk atmospheric motion
    (Physical Review D, 2022)
    Morris, Thomas W.
    ;
    ;
    Calabrese, Erminia
    ;
    Choi, Steve K.
    ;
    Duivenvoorden, Adriaan J.
    ;
    Dunkley, Jo
    ;
    Dünner, Rolando
    ;
    Gallardo, Patricio A.
    ;
    Hasselfield, Matthew
    ;
    Hincks, Adam D.
    ;
    Mroczkowski, Tony
    ;
    Naess, Sigurd
    ;
    Niemack, Michael D.
    ;
    Page, Lyman
    ;
    Partridge, Bruce
    ;
    Salatino, Maria
    ;
    Staggs, Suzanne
    ;
    Treu, Jesse
    ;
    Wollack, Edward J.
    ;
    Xu, Zhilei
    Fluctuating atmospheric emission is a dominant source of noise for ground-based millimeter-wave observations of the cosmic microwave background (CMB) temperature anisotropy at angular scales ≳0.5°. We present a model of the atmosphere as a discrete set of emissive turbulent layers that move with respect to the observer with a horizontal wind velocity. After introducing a statistic derived from the time-lag dependent correlation function for detector pairs in an array, referred to as the pair-lag, we use this model to estimate the aggregate angular motion of the atmosphere derived from time-ordered data from the Atacama Cosmology Telescope (ACT). We find that estimates derived from ACT’s CMB observations alone agree with those derived from satellite weather data that additionally include a height-dependent horizontal wind velocity and water vapor density. We also explore the dependence of the measured atmospheric noise spectrum on the relative angle between the wind velocity and the telescope scan direction. In particular, we find that varying the scan velocity changes the noise spectrum in a predictable way. Computing the pair-lag statistic opens up new avenues for understanding how atmospheric fluctuations impact measurements of the CMB anisotropy.
  • Thumbnail Image
    Publication
    Four-year Cosmology Large Angular Scale Surveyor (CLASS) observations: On-sky receiver performance at 40, 90, 150, and 220 GHz frequency bands
    (The Astrophysical Journal, 2022)
    Dahal, Sumit
    ;
    Appel, John
    ;
    Datta, Rahul
    ;
    Brewer, Michael
    ;
    Ali, Aamir
    ;
    Bennett, Charles
    ;
    Chan, Manwei
    ;
    Chuss, David
    ;
    Cleary, Joseph
    ;
    Couto, Jullianna
    ;
    Denis, Kevin
    ;
    Dünner, Rolando
    ;
    Eimer, Joseph
    ;
    Espinoza, Francisco
    ;
    Essinger Hileman, Thomas
    ;
    Golec, Joseph
    ;
    Harrington, Kathleen
    ;
    Helson, Kyle
    ;
    Iuliano, Jeffrey
    ;
    Karakla, John
    ;
    Yunyang, Li
    ;
    Marriage, Tobias
    ;
    McMahon, Jeffrey
    ;
    Miller, Nathan
    ;
    Novack, Sasha
    ;
    Núñez, Carolina
    ;
    Osumi, Keisuke
    ;
    Padilla, Ivan
    ;
    Palma, Gonzalo
    ;
    Parker, Lucas
    ;
    Petroff, Matthew
    ;
    Reeves, Rodrigo
    ;
    Rhoades, Gary
    ;
    Rostem, Karwan
    ;
    Valle, Deniz
    ;
    Watts, Duncan
    ;
    Weiland, Janet
    ;
    Wollack, Edward
    ;
    Zhilei, Xu
    ;
    The Cosmology Large Angular Scale Surveyor (CLASS) observes the polarized cosmic microwave background (CMB) over the angular scales of 1° ≲ θ ≤ 90° with the aim of characterizing primordial gravitational waves and cosmic reionization. We report on the on-sky performance of the CLASS Q-band (40 GHz), W-band (90 GHz), and dichroic G-band (150/220 GHz) receivers that have been operational at the CLASS site in the Atacama desert since 2016 June, 2018 May, and 2019 September, respectively. We show that the noise-equivalent power measured by the detectors matches the expected noise model based on on-sky optical loading and lab-measured detector parameters. Using Moon, Venus, and Jupiter observations, we obtain power to antenna temperature calibrations and optical efficiencies for the telescopes. From the CMB survey data, we compute instantaneous array noise-equivalent-temperature sensitivities of 22, 19, 23, and 71 $\mu {{\rm{K}}}_{\mathrm{cmb}}\sqrt{{\rm{s}}}$ for the 40, 90, 150, and 220 GHz frequency bands, respectively. These noise temperatures refer to white noise amplitudes, which contribute to sky maps at all angular scales. Future papers will assess additional noise sources impacting larger angular scales.
  • Publication
    Two Year Cosmology Large Angular Scale Surveyor (CLASS) Observations: Long timescale stability achieved with a front-end variable-delay polarization modulator at 40 GHz
    (IOP Publishing, 2021) ;
    Harrington, Kathleen
    ;
    Datta, Rahul
    ;
    Osumi, Keisuke
    ;
    Ali, Aamir
    ;
    Appel, John
    ;
    Bennett, Charles
    ;
    Brewer, Michael
    ;
    Chan, Manwei
    ;
    Chuss, David
    ;
    Cleary, Joseph
    ;
    Denes-Couto, Jullianna
    ;
    Dahal, Sumit
    ;
    Dünner, Rolando
    ;
    Eimer, Joseph
    ;
    Essinger-Hileman, Thomas
    ;
    Hubmayr, Johannes
    ;
    Espinoza-Inostroza, Francisco
    ;
    Iuliano, Jeffrey
    ;
    Karakla, John
    ;
    Li, Yunyang
    ;
    Marriage, Tobias
    ;
    Miller, Nathan
    ;
    Núñez, Carolina
    ;
    Padilla, Ivan
    ;
    Parker, Lucas
    ;
    Petroff, Matthew
    ;
    Pradenas-Márquez, Bastian
    ;
    Reeves, Rodrigo
    ;
    Fluxá-Rojas, Pedro
    ;
    Rostem, Karwan
    ;
    Nunes-Valle, Deniz
    ;
    Watts, Duncan
    ;
    Weiland, Janet
    ;
    Wollack, Edward
    ;
    Xu, Zhilei
    The Cosmology Large Angular Scale Surveyor (CLASS) is a four-telescope array observing the largest angular scales (2 < ℓ < 200) of the cosmic microwave background (CMB) polarization. These scales encode information about reionization and inflation during the early universe. The instrument stability necessary to observe these angular scales from the ground is achieved through the use of a variable-delay polarization modulator as the first optical element in each of the CLASS telescopes. Here, we develop a demodulation scheme used to extract the polarization timestreams from the CLASS data and apply this method to selected data from the first 2 yr of observations by the 40 GHz CLASS telescope. These timestreams are used to measure the 1/f noise and temperature-to-polarization (T → P) leakage present in the CLASS data. We find a median knee frequency for the pair-differenced demodulated linear polarization of 15.12 mHz and a T → P leakage of <3.8 × 10−4 (95% confidence) across the focal plane. We examine the sources of 1/f noise present in the data and find the component of 1/f due to atmospheric precipitable water vapor (PWV) has an amplitude of 203 12 K s  m RJ for 1 mm of PWV when evaluated at 10 mHz; accounting for ∼17% of the 1/f noise in the central pixels of the focal plane. The low levels of T → P leakage and 1/f noise achieved through the use of a front-end polarization modulator are requirements for observing of the largest angular scales of the CMB polarization by the CLASS telescopes.
  • Thumbnail Image
    Publication
    Two-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: A measurement of circular polarization at 40 GHz
    (Astrophysical Journal, 2020)
    Padilla, Ivan L.
    ;
    Eimer, Joseph R.
    ;
    Li, Yunyang
    ;
    Addison, Graeme E.
    ;
    Ali, Aamir
    ;
    Appel, John W.
    ;
    Bennett, Charles L.
    ;
    ;
    Brewer, Michael K.
    ;
    Chan, Manwei
    ;
    Chuss, David T.
    ;
    Cleary, Joseph
    ;
    Couto, Jullianna Denes
    ;
    Dahal, Sumit
    ;
    Denis, Kevin
    ;
    Dünner, Rolando
    ;
    Essinger-Hileman, Thomas
    ;
    Fluxá, Pedro
    ;
    Gothe, Dominik
    ;
    Haridas, Saianeesh K.
    ;
    Harrington, Kathleen
    ;
    Iuliano, Jeffrey
    ;
    Karakla, John
    ;
    Marriage, Tobias A.
    ;
    Miller, Nathan J.
    ;
    Núñez, Carolina
    ;
    Parker, Lucas
    ;
    Petroff, Matthew A.
    ;
    Reeves, Rodrigo
    ;
    Rostem, Karwan
    ;
    Stevens, Robert W.
    ;
    Nunes Valle, Deniz Augusto
    ;
    Watts, Duncan J.
    ;
    Weiland, Janet L.
    ;
    Wollack, Edward J.
    ;
    Xu, Zhilei
    We report measurements of circular polarization from the first two years of observation with the 40 GHz polarimeter of the Cosmology Large Angular Scale Surveyor (CLASS). CLASS is conducting a multi-frequency survey covering 75% of the sky from the Atacama Desert designed to measure the cosmic microwave background (CMB) linear E and B polarization on angular scales 1°  θ 90°, corresponding to a multipole range of 2 ℓ  200. The modulation technology enabling measurements of linear polarization at the largest angular scales from the ground, the Variable-delay Polarization Modulator, is uniquely designed to provide explicit sensitivity to circular polarization (Stokes V ). We present a first detection of circularly polarized atmospheric emission at 40 GHz that is well described by a dipole with an amplitude of 124 4 K  m when observed at an elevation of 45°, and discuss its potential impact on the recovery of linear polarization by CLASS. Filtering the atmospheric component, CLASS places a 95% confidence upper limit of 0.4 Km 2 to 13.5 Km 2 on ℓℓ C ( ) () + 1 2 ℓ p VV for 1 120  ℓ , representing an improvement by two orders of magnitude over previous CMB limits.
  • Publication
    Two-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: 40 GHz telescope pointing, beam profile, window function, and polarization performance
    (IOP Publishing, 2020) ;
    Xu, Zhilei
    ;
    Brewer, Michael
    ;
    Fluxá-Rojas, Pedro
    ;
    Li, Yunyang
    ;
    Osumi, Keisuke
    ;
    Pradenas, Bastián
    ;
    Ali, Aamir
    ;
    Appel, John
    ;
    Bennett, Charles
    ;
    Chan, Manwei
    ;
    Chuss, David
    ;
    Cleary, Joseph
    ;
    Couto, Jullianna
    ;
    Dahal, Sumit
    ;
    Datta, Rahul
    ;
    Denis, Kevin
    ;
    Dünner, Rolando
    ;
    Eimer, Joseph
    ;
    Essinger-Hileman, Thomas
    ;
    Gothe, Dominik
    ;
    Harrington, Kathleen
    ;
    Iuliano, Jeffrey
    ;
    Karakla, John
    ;
    Marriage, Tobias
    ;
    Miller, Nathan
    ;
    Núñez, Carolina
    ;
    Padilla, Ivan
    ;
    Parker, Lucas
    ;
    Petroff, Matthew
    ;
    Reeves, Rodrigo
    ;
    Rostem, Karwan
    ;
    Nunes-Valle, Deniz
    ;
    Watts, Duncan
    ;
    Weiland, Janet
    ;
    Wollack, Edward
    The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background (CMB) over 75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the large angular scale (1°  θ  90°) CMB polarization to constrain the tensor-to-scalar ratio at the r ∼ 0.01 level and the optical depth to last scattering to the sample variance limit. This paper presents the optical characterization of the 40 GHz telescope during its first observation era, from 2016 September to 2018 February. High signal-to-noise observations of the Moon establish the pointing and beam calibration. The telescope boresight pointing variation is <0°. 023 (<1.6% of the beam’s full width at half maximum (FWHM)). We estimate beam parameters per detector and in aggregate, as in the CMB survey maps. The aggregate beam has an FWHM of 1°. 579 ± 0°.001 and a solid angle of 838 ± 6 μsr, consistent with physical optics simulations. The corresponding beam window function has a sub-percent error per multipole at ℓ < 200. An extended 90° beam map reveals no significant far sidelobes. The observed Moon polarization shows that the instrument polarization angles are consistent with the optical model and that the temperature-to-polarization leakage fraction is <10−4 (95% C.L.). We find that the Moon-based results are consistent with measurements of M42, RCW 38, and Tau A from CLASS’s CMB survey data. In particular, Tau A measurements establish degree level precision for instrument polarization angles.
  • Thumbnail Image
    Publication
    Two-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: A First Detection of Atmospheric Circular Polarization at Q band
    (Astrophysical Journal, 2020)
    Petroff, Matthew A.
    ;
    Eimer, Joseph R.
    ;
    Harrington, Kathleen
    ;
    Ali, Aamir
    ;
    Appel, John W.
    ;
    Bennett, Charles L.
    ;
    Brewer, Michael K.
    ;
    ;
    Chan, Manwei
    ;
    Chuss, David T.
    ;
    Cleary, Joseph
    ;
    Denes Couto, Jullianna
    ;
    Dahal, Sumit
    ;
    Dünner, Rolando
    ;
    Essinger-Hileman, Thomas
    ;
    Fluxá Rojas, Pedro
    ;
    Gothe, Dominik
    ;
    Iuliano, Jeffrey
    ;
    Marriage, Tobias A.
    ;
    Miller, Nathan J.
    ;
    Núñez, Carolina
    ;
    Padilla, Ivan L.
    ;
    Parker, Lucas
    ;
    Reeves, Rodrigo
    ;
    Rostem, Karwan
    ;
    Nunes Valle, Deniz Augusto
    ;
    Watts, Duncan J.
    ;
    Weiland, Janet L.
    ;
    Wollack, Edward J.
    ;
    Xu, Zhilei
    The Earth’s magnetic field induces Zeeman splitting of the magnetic dipole transitions of molecular oxygen in the atmosphere, which produces polarized emission in the millimeter-wave regime. This polarized emission is primarily circularly polarized and manifests as a foreground with a dipole-shaped sky pattern for polarizationsensitive ground-based cosmic microwave background experiments, such as the Cosmology Large Angular Scale Surveyor (CLASS), which is capable of measuring large angular scale circular polarization. Using atmospheric emission theory and radiative transfer formalisms, we model the expected amplitude and spatial distribution of this signal and evaluate the model for the CLASS observing site in the Atacama Desert of northern Chile. Then, using two years of observations at 32°. 3 to 43.7 GHz from the CLASS Q-band telescope, we present a detection of this signal and compare the observed signal to that predicted by the model. We recover an angle between magnetic north and true north of −5°. 5 ± 0°. 6, which is consistent with the expectation of −5°.9 for the CLASS observing site. When comparing dipole sky patterns fit to both simulated and data-derived sky maps, the dipole directions match to within a degree, and the measured amplitudes match to within ∼20%.