Research Outputs

Now showing 1 - 10 of 18
No Thumbnail Available
Publication

A graph-based algorithm for the approximation of the spectrum of the curl operator

2023, Alonso-Rodríguez, A., Dra. Camaño-Valenzuela, Jessika

We analyze a new algorithm for the finite element approximation of a family of eigenvalue problems for the curl operator that includes, in particular, the approximation of the helicity of a bounded domain. It exploits a tree-cotree decomposition of the graph relating the degrees of freedom of the Lagrangian finite elements and those of the first family of Nédélec finite elements to reduce significantly the dimension of the algebraic eigenvalue problem to be solved. The algorithm is well adapted to domains of general topology. Numerical experiments, including a not simply connected domain with a not connected boundary, are presented in order to assess the performance and generality of the method.

No Thumbnail Available
Publication

Analysis of a new mixed FEM for stationary incompressible magneto-hydrodynamics

2022, Dra. Camaño-Valenzuela, Jessika, García, Carlos, Oyarzúa, Ricardo

In this paper we propose and analyze a new mixed finite element method for a stationary magneto-hydrodynamic (MHD) model. The method is based on the utilization of a new dual-mixed formulation recently introduced for the Navier-Stokes problem, which is coupled with a classical primal formulation for the Maxwell equations. The latter implies that the velocity and a pseudostress tensor relating the velocity gradient with the convective term for the hydrodynamic equations, together with the magnetic field and a Lagrange multiplier related with the divergence-free property of the magnetic field, become the main unknowns of the system. Then the associated Galerkin scheme can be defined by employing Raviart–Thomas elements of degree k for the aforementioned pseudostress tensor, discontinuous piecewise polynomial elements of degree k for the velocity, Nédélec elements of degree k for the magnetic field and Lagrange elements of degree k for the associated Lagrange multiplier. The analysis of the continuous and discrete problems are carried out by means of the Lax–Milgram lemma, the Banach–Nečas–Babuška and Banach fixed-point theorems, under a sufficiently small data assumption. In particular, the analysis of the discrete scheme requires a quasi-uniformity assumption on mesh. We also develop an a priori error analysis and show that the proposed finite element method is optimal convergent. Finally, some numerical results illustrating the good performance of the method are provided.

No Thumbnail Available
Publication

Finite element approximation of the spectrum of the curl operator in a multiply connected domain

2019, Alonso Rodríguez, Ana María, Dra. Camaño-Valenzuela, Jessika, Rodríguez, R., Valli, A., Venegas, P.

In this paper we are concerned with two topics: the formulation and analysis of the eigenvalue problem for the curlcurl operator in a multiply connected domain and its numerical approximation by means of finite elements. We prove that the curlcurl operator is self-adjoint on suitable Hilbert spaces, all of them being contained in the space for which curlvv⋅nn=0curl⁡vv⋅nn=0 on the boundary. Additional constraints must be imposed when the physical domain is not topologically trivial: we show that a viable choice is the vanishing of the line integrals of vvvv on suitable homological cycles lying on the boundary. A saddle-point variational formulation is devised and analyzed, and a finite element numerical scheme is proposed. It is proved that eigenvalues and eigenfunctions are efficiently approximated and some numerical results are presented in order to assess the performance of the method.

No Thumbnail Available
Publication

A graph approach for the construction of high order divergence-free Raviart–Thomas finite elements

2018, Alonso Rodríguez, Ana María, Dra. Camaño-Valenzuela, Jessika, De Los Santos, E., Rapetti, F.

We propose and analyze an efficient algorithm for the computation of a basis of the space of divergence-free Raviart–Thomas finite elements. The algorithm is based on graph techniques. The key point is to realize that, with very natural degrees of freedom for fields in the space of Raviart–Thomas finite elements of degree r+1r+1 and for elements of the space of discontinuous piecewise polynomial functions of degree r≥0r≥0, the matrix associated with the divergence operator is the incidence matrix of a particular graph. By choosing a spanning tree of this graph, it is possible to identify an invertible square submatrix of the divergence matrix and to compute easily the moments of a field in the space of Raviart–Thomas finite elements with assigned divergence. This approach extends to finite elements of high degree the method introduced by Alotto and Perugia (Calcolo 36:233–248, 1999) for finite elements of degree one. The analyzed approach is used to construct a basis of the space of divergence-free Raviart–Thomas finite elements. The numerical tests show that the performance of the algorithm depends neither on the topology of the domain nor or the polynomial degree r.

No Thumbnail Available
Publication

Divergence-free finite elements for the numerical solution of a hydroelastic vibration problem

2023, Alonso-Rodríguez, Ana, Dra. Camaño-Valenzuela, Jessika, De Los Santos ,Eduardo, Rodríguez , Rodolfo

In this paper, we analyze a divergence-free finite element method to solve a fluid–structure interaction spectral problem in the three-dimensional case. The unknowns of the resulting formulation are the fluid and solid displacements and the fluid pressure on the interface separating both media. The resulting mixed eigenvalue problem is approximated by using appropriate basis of the divergence-free lowest order Raviart–Thomas elements for the fluid, piecewise linear elements for the solid and piecewise constant elements for the interface pressure. It is proved that eigenvalues and eigenfunctions are correctly approximated and some numerical results are reported in order to assess the performance of the method.

No Thumbnail Available
Publication

A posteriori error analysis of a momentum conservative Banach spaces based mixed-FEM for the Navier-Stokes problem

2022, Dra. Camaño-Valenzuela, Jessika, Dr. Caucao-Paillán, Sergio, Oyarzúa, Ricardo, Villa-Fuentes, Segundo

In this paper we develop an a posteriori error analysis of a new momentum conservative mixed finite element method recently introduced for the steady-state Navier–Stokes problem in two and three dimensions. More precisely, by extending standard techniques commonly used on Hilbert spaces to the case of Banach spaces, such as local estimates, and suitable Helmholtz decompositions, we derive a reliable and efficient residual-based a posteriori error estimator for the corresponding mixed finite element scheme on arbitrary (convex or non-convex) polygonal and polyhedral regions. On the other hand, inverse inequalities, the localization technique based on bubble functions, among other tools, are employed to prove the efficiency of the proposed a posteriori error indicator. Finally, several numerical results confirming the properties of the estimator and illustrating the performance of the associated adaptive algorithm are reported.

No Thumbnail Available
Publication

Correction to: Finite element approximation of the spectrum of the curl operator in a multiply connected domain

2019, Alonso Rodríguez, Ana María, Dra. Camaño-Valenzuela, Jessika, Rodríguez, Rodolfo, Valli, Alberto, Venegas Tapia, Pablo

In the published article, Figure 5 corresponds to an eigenfunction associated not with the first smallest positive eigenvalue. A correct eigenfunction of the latter is depicted in Fig. 1 here. Note that this eigenfunction is axisymmetric, as can be seen from Fig. 2 where its radial, azimuthal and vertical components are plotted on different meridian sections.

No Thumbnail Available
Publication

A five-field mixed formulation for stationary magnetohydrodynamic flows in porous media

2023, Angelo, Lady, Dra. Camaño-Valenzuela, Jessika, Dr. Caucao-Paillán, Sergio

We introduce and analyze a new mixed variational formulation for a stationary magnetohydrodynamic flows in porous media problem, whose governing equations are given by the steady Brinkman–Forchheimer equations coupled with the Maxwell equations. Besides the velocity, magnetic field and a Lagrange multiplier associated to the divergence-free condition of the magnetic field, a convenient translation of the velocity gradient and the pseudostress tensor are introduced as further unknowns. As a consequence, we obtain a five-field Banach spaces based mixed variational formulation, where the aforementioned variables are the main unknowns of the system. The resulting mixed scheme is then written equivalently as a fixed-point equation, so that the well-known Banach theorem, combined with classical results on nonlinear monotone operators and a sufficiently small data assumption, are applied to prove the unique solvability of the continuous and discrete systems. In particular, the analysis of the discrete scheme requires a quasi-uniformity assumption on mesh. The finite element discretization involves Raviart–Thomas elements of order for the pseudostress tensor, discontinuous piecewise polynomial elements of degree for the velocity and the translation of the velocity gradient, Nédélec elements of degree for the magnetic field and Lagrange elements of degree for the associated Lagrange multiplier. Stability, convergence, and optimal a priori error estimates for the associated Galerkin scheme are obtained. Numerical tests illustrate the theoretical results.

No Thumbnail Available
Publication

Analysis of a momentum conservative mixed-FEM for the stationary Navier-Stokes problem

2021, Dra. Camaño-Valenzuela, Jessika, García, Carlos, Oyarzúa, Ricardo

In this paper, we propose and analyze a new momentum conservative mixed finite element method for the Navier–Stokes problem posed in nonstandard Banach spaces. Our approach is based on the introduction of a pseudostress tensor relating the velocity gradient with the convective term, leading to a mixed formulation where the aforementioned pseudostress tensor and the velocity are the main unknowns of the system. Then the associated Galerkin scheme can be defined by employing Raviart–Thomas elements of degree K for the pseudostress tensor and discontinuous piece–wise polynomial elements of degree K for the velocity. With this choice of spaces, the equilibrium equation is exactly satisfied if the external force belongs to the velocity discrete space, thus the method conserves momentum, which constitutes one of the main feature of our approach. For both, the continuous and discrete problems, the Banach–Nečas–Babuška and Banach's fixed-point theorems are employed to prove unique solvability. We also provide the convergence analysis and particularly prove that the error decay with optimal rate of convergence. Further variables of interest, such as the fluid pressure, the fluid vorticity and the fluid velocity gradient, can be easily approximated as a simple postprocess of the finite element solutions with the same rate of convergence. Finally, several numerical results illustrating the performance of the method are provided.

No Thumbnail Available
Publication

Convergence of a lowest-order finite element method for the transmission eigenvalue problem

2018, Dra. Camaño-Valenzuela, Jessika, Rodríguez, Rodolfo, Venegas, Pablo

The transmission eigenvalue problem arises in scattering theory. The main difficulty in its analysis is the fact that, depending on the chosen formulation, it leads either to a quadratic eigenvalue problem or to a non-classical mixed problem. In this paper we prove the convergence of a mixed finite element approximation. This approach, which is close to the Ciarlet–Raviart discretization of biharmonic problems, is based on Lagrange finite elements and is one of the less expensive methods in terms of the amount of degrees of freedom. The convergence analysis is based on classical abstract spectral approximation result and the theory of mixed finite element methods for solving the stream function–vorticity formulation of the Stokes problem. Numerical experiments are reported in order to assess the efficiency of the method.