Research Outputs

Now showing 1 - 10 of 25
No Thumbnail Available
Publication

Load-level isolator model for pallets on industrial storage racks and validation with experimental results

2024, Dr. Maureira-Carsalade, Nelson, Dr. Nuñez-Castellanos, Eduardo, Sanhueza-Cartes, Marcelo, Roco-Videla, Angel

This paper introduces a system allows for seismic isolation of the pallet from the rack in the down-aisle direction, occupies minimal vertical space (5 cm) and ±7.5 cm of deformation range. A conceptual model of the isolation system is presented, leading to a constitutive equation governing its behavior. A first experimental campaign studying the response of the isolation system's components was conducted to calibrate the parameters of its constitutive equation. A second experimental campaign evaluated the response of the isolation system with mass placed on it, subjected to cyclic loading. The results of this second campaign were compared with the numerical predictions using the pre-calibrated constitutive equation, allowing a double-blind validation of the constitutive equation of the isolation system. Finally, a numerical evaluation of the isolation system subjected to a synthetic earthquake of one component. This evaluation allowed verifying attributes of the proposed isolation system, such as its self-centering capacity and its effectiveness in reducing the absolute acceleration of the isolated mass and the shear load transmitted to the supporting beams of the rack.

Thumbnail Image
Publication

A Simplified Framework to Integrate Databases with Building Information Modeling for Building Energy Assessment in Multi-Climate Zones

2024, Lobos Calquín, Danny, Mata, Ramón, Vielma, Juan Carlos, Beaumont-Sepulveda, Juan Carlos, Mg. Correa-Rogel, Claudio, Dr. Nuñez-Castellanos, Eduardo, Forcael, Eric, Blanco, David, Pulgar, Pablo

BIM models are seldom used for the energy certification of buildings. This paper discusses the advantages of linking two important fields: building information modeling (BIM) and building environmental assessment methods (BEAM), presented as a rating system and a proposal for the Chilean context. The state of the art in both fields around the world is discussed, with an in-depth examination of current BIM software and related applications, followed by a discussion about previous research on integrating them. A lack of interoperability and data losses between BIM and BEM were found. A new tool is presented that addresses these challenges to ensure accurate rating system data, and this new framework is based on database exchange and takes crucial information from BIM to BEAM platforms. The development of the method includes BIM programming (API), database links, and spreadsheets for a Chilean building energy certification through a new tool, also applicable to multiclimactic zones. This new semi-automatic tool allows architects to model their design in a BIM platform and use this information as input for the energy certification process. The potential and risks of this method are discussed. Several improvements and enhancements of the energy certification process were found when incorporating this new framework in comparison to current methodologies.

No Thumbnail Available
Publication

Seismic performance of eccentrically braced frames with short-links: IDA approach using chilean earthquakes

2023, Mata, Ramón, Nuñez-Castellanos, Eduardo, Calo, Byron, Herrera , Ricardo

In this research the seismic performance of eccentrically braced frames (EBF) with short links using Chilean earthquakes is studied. The study includes nonlinear static and dynamic analyses, calibration of numerical link models with experimental studies, and over 15,000 models analyzed. Results show that higher ductility and deformation are obtained in most archetypes, while models with 8 stories exhibit more stiffness and less ductile behavior. Furthermore, the strength capacity and ductility increase with the increment of the seismic zone and soft type of soil. Moreover, the research provides a table with the seismic design parameters for each archetype group comparing these values with Chilean seismic specifications. Finally, the study concludes that structures designed with more strength and stiffness have a lower collapse probability under extreme events. This research provides valuable information for structural design and includes fragility curves and a discussion of results that can be applied to structural design.

No Thumbnail Available
Publication

Cyclic behavior of 3D moment connections subjected to bidirectional load: Experimental approach

2023, Nuñez-Castellanos, Eduardo, Bustos-Figueroa, Juan, Mata-Lemus, Ramón, Sanhueza-Espinoza, Frank, Lapeña-Mañero, Pablo

This paper presents an experimental research to assess the cyclic behavior of a bolted moment connection with the use of optimized end-plate connected to built-up box column subassemblies subjected to bidirectional and unidirectional loading. Seven real scale specimens were tested: three specimens with four beams connected to column as interior joint, two specimens with two beams connected as corner joint configuration and two specimens with two beams connected to column as interior joint, according the protocol established in AISC Seismic provisions. The seismic performance was evaluated in terms of hysteretic behavior, failure mechanism, stiffness and dissipated energy. The joints studied were manufactured from of hot-rolled I-beams and square built-up box columns. The elements of connection such as bolts, welding, outer stiffeners and end-plates were designed to remain in elastic range from the flexural expected capacity of beams. The results showed that the required minimum moment of 0.8Mp at 0.04 rad of drift angle was achieved for all specimens tested. However, a higher stiffness and resistance was reached in configuration with unidirectional load (interior joint) in comparison to joint subjected to bidirectional load (corner joint). The damage was concentrated uniquely in beams, while an elastic behavior in columns and connection components was reached for 0.04 rad of drift angle. Finally, this moment connection configuration can be used as an alternative to design buildings with special moment frames under bidirectional loading considering the cyclic behavior of joints evaluated.

Thumbnail Image
Publication

Cyclic behavior of concrete-filled tube columns with bidirectional moment connections considering the local slenderness effect

2024, Dr. Nuñez-Castellanos, Eduardo, Mata-Lemus, Ramón

In this research, the cyclic behavior of concrete-filled thin tube (CFTT) columns with bidirectional moment connections was numerically studied within the context of thin-walled structures. Novel considerations in the design of CFTT columns with slenderness sections are proposed through a parametric study. A total of 70 high-fidelity finite element (FE) models are developed using ANSYS software v2022 calibrated from experimental research using similar 3D joint configurations. Furthermore, a comparison of different width-to-thickness ratios in columns was considered. The results showed that the models with a high slenderness ratio reached a stable cyclic behavior until 0.03 rad of drift, and a flexural strength of 0.8 Mp was reached for 4% of the drift ratio according to the Seismic Provisions. However, this effect slightly decreased the strength and the dissipated energy of the moment connection in comparison to columns with a high ductility ratio. Moreover, an evaluation of concrete damages shows concrete cracked for cyclic loads higher than 3% of drift. Finally, the joint configurations studied can achieve a good performance, avoiding brittle failure mechanisms and ensuring the plastic hinges in the beams.

Thumbnail Image
Publication

Implementation of building information modeling technologies in wood construction: A review of the state of the art from a multidisciplinary approach

2024, Bustamante-Laissle, Guillermo, Mg. Correa-Rogel, Claudio, Dr. Nuñez-Castellanos, Eduardo, Mata-Lemus, Ramón, Roa-Rojas, Leonardo, Lobos-Calquin, Danny, Caicedo, Natalia, Blanco-Fernandez, David, Díaz, Marcos, Pulgar-Rubilar, Pablo

This research raises questions about the possibilities and options of using the BIM methodology associated with software for the wood design and construction of structure modeling along an asset’s cycle life. Likewise, several academic and research initiatives are reviewed. In this sense, this paper aims to establish an appropriate link between two agendas that the architecture, engineering, and construction (AEC) industry, academia, and governments normally handle separately. By conducting several literature reviews (book, journals, and congresses) and extensive software tests (BIM software: Revit v2023, Archicad v27, Tekla, and wood plug-ins: AGACAD, Archiframe, Timber Framing 2015, WoodStud Frame, etc.), the state-of-the-art was assessed in both fields, and several cases linking BIM and wood are shown in detail and discussed. Various theoretical samples are modelled and shown, and the advantages and disadvantages of each technique and stage are explained. On the other hand, although wood construction has been most common for hundreds of years, this is not the case of BIM software developments associated with this materiality. Furthermore, since the appearance of materials such as steel and reinforced concrete, all software developments have focused on these materials, leaving aside the possibility of developing applications for use in wood projects. According to that previously discussed, it can be concluded that BIM for wood has been used more frequently in academia, that both fields have several common processes, and, in many cases, that only a few BIM-wood tools have been used, thus disregarding the high potential and high level of benefits that result with the application of these methodologies for the complete building life cycle (design, construction, and operation).

No Thumbnail Available
Publication

Incremental dynamic analysis of steel storage racks subjected to Chilean earthquakes

2023, Nuñez-Castellanos, Eduardo, Aguayo, Catalina, Mata, Ramón

Steel storage racks are structures commonly used by all industries in Chile; nevertheless, due the seismic hazard in the country and its configurations, these structures are highly vulnerable to earthquakes and no specific regulations exist to design them. In this research, the seismic performance of steel storage racks subjected to Chilean Earthquakes was evaluated using nonlinear pushover and nonlinear dynamic analysis. The studied models consider different heights and global slenderness ratios in both directions and soil types. Racks were evaluated using an Incremental Dynamic Analysis (IDA) according to FEMA P695. Deformation values were exceeded in the down-aisle direction and the use of braces was necessary to control the interstory drift and high deformation levels. Also, the expected level of damage for drift design limits in models unbracing is not enough to keep the operation of the structures and more severe regulations are necessary to achieve a performance in agreement with Chilean design philosophy. Finally, the use of horizontal and lateral bracing improves the seismic performance of steel racks.

No Thumbnail Available
Publication

Strong column-weak beam relationship of 3D steel joints with tubular columns: Assessment, validation and design proposal

2024, Dr. Nuñez-Castellanos, Eduardo, Mata-Lemus, Ramón

The study of moment connections in steel structures subjected to cyclic loads has been extensively studied, providing a great number of requirements, including the strong column-weak beam relationship, to guarantee a satisfactory cyclic performance. However, investigations on the cyclic performance of moment connections considering the bidirectional and axial load effects simultaneously with tubular columns are limited. This study aims to assess and validate the strong column-weak beam relationship of 3D steel moment connections using reduced order models. The simplified model (reduced order model) approach was employed to extend the range of beam and column elements sizes and reduce the experimental and computational costs. These models were calibrated from full-scale experimental studies. A great number of configurations with different beam and column sizes without loss of reliability and structural representativeness of the studied phenomenon were studied. A total of 13640 simplified models were developed. Results show a cyclic behavior controlled by the strong column-weak beam relationship to modify the joint’s failure mechanism. The increasing of strong column-weak beam relationship and the biaxial effect caused degradation of the strength and stiffness as well as in dissipated energy. An optimal strong column-weak beam relationship was obtained for all joint configurations analyzed. Finally, a robust design procedure is proposed, ensuring the cyclic behavior of end-plate moment connection with built-up box column including biaxial effect and axial load. Therefore, the use of this type of moment connection can be used in special and intermediate moment frames designed according to Seismic provisions.

Thumbnail Image
Publication

Cyclic behavior of the column-tree moment connection with weakened plates: A numerical approach

2023, Dr. Nuñez-Castellanos, Eduardo, Matthews, Pablo

The use of column-tree connections is common in controlled shop environments due to their cost-effectiveness in achieving ductile welds. Field bolts are also easy to install and inspect. However, there is currently no prequalification available for these connections, their performance is not fully understood, and the cost of aftermath repairs is still a major concern for owners. In this research, analytical and numerical studies were performed to assess the cyclic behavior considering the effects of the bolted splice location, bolt slippage, and splice plate thickness. Fourteen numerical models using the finite element method in ANSYS software were analyzed to evaluate the nonlinear behavior of moment connection configurations in terms of the strength, stiffness, ductility, energy dissipation, and overall cyclic response. The results showed that appropriately proportioned bolted splice connections can meet the requirements for prequalified moment connections. The models complied with the criteria established in AISC 358 and achieved flexural resistance that was higher than 80% of the beam plastic moment at 4% of the interstory drift ratio. The weakened plates concentrated the inelastic action, which allowed us to prevent the brittle behavior and damage to the column, welding, and other components of the moment connection. Complex geometries or specially fabricated parts were not required, providing a cost-effective way to control seismic-related damage. Also, required repairs are based on the replacement of standard parts, reducing operational detentions in facilities. Finally, the moment connection studied is classified as partially restrained (PR) according to the requirements established in AISC 360.

Thumbnail Image
Publication

Proof of concept and preliminary validation of an analytical model of an energy dissipator for tension loads with self-centering capacity

2023, Maureira-Carsalade, Nelson, Balboa-Constanzo, Esteban, Sanhueza-Cartes, Marcelo, Sanhueza, Claudio, Nuñez-Castellanos, Eduardo, Roco-Videla, Ángel

A novel energy dissipation device is proposed to protect structures against dynamic loads. A conceptual model of the device is presented, describing the fundamental components of its operation. This model has a linear elastic element and a frictional damper. The equilibrium equations that lead to the relationship that governs its behavior are proposed. A functional model of the device was built on a 3D printer with PLA filament. Experimental trials were carried out to characterize its elastic component and the coefficient of friction of the damping parts. Proofs of concept load-unload tests were also carried out on the device, subjecting it to cyclical movement sequences. The results of the first two types of tests allowed the parameters of the previously developed analytical model to be calibrated. The results of the load-unload tests were compared with the predictions of the analytical model using the calibrated parameters. Consistency was observed between the experimental and analytical results, demonstrating the basic attributes of the device: self-centering capacity, dissipation capacity and force proportional to the displacement demand. It is concluded that the proposed device has the potential to be used effectively in the protection of structures under dynamic loads.