• Home
  • UCSC journals portal
  • ANID repository
  • UCSC Thesis Repository
  • English
  • Español
  • Log In
    Have you forgotten your password?
  1. Home
  2. Productividad Científica
  3. Publicaciones Científicas
  4. An a posteriori error estimator for a non homogeneous Dirichlet problem considering a dual mixed formulation
 
Options
An a posteriori error estimator for a non homogeneous Dirichlet problem considering a dual mixed formulation
Dr. Barrios-Faúndez, Tomás 
Facultad de Ingeniería 
Bustinza, R.
Campos, C.
10.5540/tcam.2022.023.03.00549
Trends in Computational and Applied Mathematics
2022
In this paper, we describe an a posteriori error analysis for a conforming dual mixed scheme of the Poisson problem with non homogeneous Dirichlet boundary condition. As a result, we obtain an a posteriori error estimator, which is proven to be reliable and locally efficient with respect to the usual norm on H(div;Omega) x L^2(Omega). We remark that the analysis relies on the standard Ritz projection of the error, and take into account a kind of a quasi-Helmholtz decomposition of functions in H(div;Omega), which we have established in this work. Finally, we present one numerical example that validates the well behavior of our estimator, being able to identify the numerical singularities when they exist.
Thumbnail Image
Download
Name

An A Posteriori Error Estimator for a Non Homogeneous Dirichlet Problem Considering a Dual Mixed Formulation.pdf

Size

954.81 KB

Format

Checksum
Mixed finite element methods
A posteriori error estimator
Reliability
Efficiency
Historial de mejoras
Proyecto financiado por: