Options
Dra. Camaño-Valenzuela, Jessika
Nombre de publicación
Dra. Camaño-Valenzuela, Jessika
Nombre completo
Camaño Valenzuela, Jessika Pamela
Facultad
Email
jecamano@ucsc.cl
ORCID
20 results
Research Outputs
Now showing 1 - 10 of 20
- PublicationFinite element approximation of the spectrum of the curl operator in a multiply connected domain(Springer, 2019)
;Alonso Rodríguez, Ana María; ;Rodríguez, R. ;Valli, A.Venegas, P.In this paper we are concerned with two topics: the formulation and analysis of the eigenvalue problem for the curlcurl operator in a multiply connected domain and its numerical approximation by means of finite elements. We prove that the curlcurl operator is self-adjoint on suitable Hilbert spaces, all of them being contained in the space for which curlvv⋅nn=0curlvv⋅nn=0 on the boundary. Additional constraints must be imposed when the physical domain is not topologically trivial: we show that a viable choice is the vanishing of the line integrals of vvvv on suitable homological cycles lying on the boundary. A saddle-point variational formulation is devised and analyzed, and a finite element numerical scheme is proposed. It is proved that eigenvalues and eigenfunctions are efficiently approximated and some numerical results are presented in order to assess the performance of the method. - PublicationAnalysis of a momentum conservative mixed-FEM for the stationary Navier-Stokes problem(Numerical Methods for Partial Differential Equations, 2021)
; ;García, CarlosOyarzúa, RicardoIn this paper, we propose and analyze a new momentum conservative mixed finite element method for the Navier–Stokes problem posed in nonstandard Banach spaces. Our approach is based on the introduction of a pseudostress tensor relating the velocity gradient with the convective term, leading to a mixed formulation where the aforementioned pseudostress tensor and the velocity are the main unknowns of the system. Then the associated Galerkin scheme can be defined by employing Raviart–Thomas elements of degree K for the pseudostress tensor and discontinuous piece–wise polynomial elements of degree K for the velocity. With this choice of spaces, the equilibrium equation is exactly satisfied if the external force belongs to the velocity discrete space, thus the method conserves momentum, which constitutes one of the main feature of our approach. For both, the continuous and discrete problems, the Banach–Nečas–Babuška and Banach's fixed-point theorems are employed to prove unique solvability. We also provide the convergence analysis and particularly prove that the error decay with optimal rate of convergence. Further variables of interest, such as the fluid pressure, the fluid vorticity and the fluid velocity gradient, can be easily approximated as a simple postprocess of the finite element solutions with the same rate of convergence. Finally, several numerical results illustrating the performance of the method are provided. - PublicationGraphs, spanning trees and divergence-free finite elements in domains of general topology(Oxford University Press, 2017)
; ;Alonso-Rodríguez, Ana ;Ghiloni, RiccardoValli, AlbertoWe construct sets of basis functions of the space of divergence-free finite elements of Raviart–Thomas type in domains of general topology. Two different methods are presented: one using a suitable selection of the curls of Nédélec finite elements, the other based on an efficient algebraic procedure. The first approach looks to be more useful for numerical approximation, as the basis functions have a localized support. - PublicationCorrection to: Finite element approximation of the spectrum of the curl operator in a multiply connected domain(Foundations of computational mathematics, 2019)
;Alonso Rodríguez, Ana María; ;Rodríguez, Rodolfo ;Valli, AlbertoVenegas Tapia, PabloIn the published article, Figure 5 corresponds to an eigenfunction associated not with the first smallest positive eigenvalue. A correct eigenfunction of the latter is depicted in Fig. 1 here. Note that this eigenfunction is axisymmetric, as can be seen from Fig. 2 where its radial, azimuthal and vertical components are plotted on different meridian sections. - PublicationWeights for moments’ geometrical localization: A canonical isomorphism(Springer Nature, 2024)
; ;Alonso-Rodríguez, Ana ;De Los Santos, EduardoRapetti, FrancescaThis paper deals with high order Whitney forms. We define a canonical isomorphism between two sets of degrees of freedom. This allows to geometrically localize the classical degrees of freedom, the moments, over the elements of a simplicial mesh. With such a localization, it is thus possible to associate, even with moments, a graph structure relating a field with its potential. - PublicationError analysis of an augmented mixed method for the Navier–Stokes problem with mixed boundary conditions(Oxford University Press, 2018)
; ;Oyarzúa, Ricardo ;Ruiz-Baier, RicardoTierra, GiordanoIn this article, we analyse an augmented mixed finite element method for the steady Navier–Stokes equations. More precisely, we extend the recent results from Camaño et al.. (2017, Analysis of an augmented mixed-FEM for the Navier–Stokes problem. Math. Comput., 86, 589–615) to the case of mixed no-slip and traction boundary conditions in different parts of the boundary, and introduce and analyse a new pseudostress–velocity-augmented mixed formulation for the fluid flow problem. The well-posedness analysis is carried out by combining the classical Babuška–Brezzi theory and Banach’s fixed-point theorem. A proper adaptation of the arguments exploited in the continuous analysis allows us to state suitable hypotheses on the finite element subspaces ensuring that the associated Galerkin scheme is well defined. For instance, Raviart–Thomas elements of order k≥0 k≥0 and continuous piecewise polynomials of degree k+1 k+1 for the nonlinear pseudostress tensor and velocity, respectively, yield optimal convergence rates. In addition, we derive a reliable and efficient residual-based a posteriori error estimator for the proposed discretization. The proof of reliability hinges on the global inf–sup condition and the local approximation properties of the Clément interpolant, whereas the efficiency of the estimator follows from inverse inequalities and localization via edge–bubble functions. A set of numerical results exemplifies the performance of the augmented method with mixed boundary conditions. The tests also confirm the reliability and efficiency of the estimator, and show the performance of the associated adaptive algorithm. - PublicationA graph-based algorithm for the approximation of the spectrum of the curl operatorWe analyze a new algorithm for the finite element approximation of a family of eigenvalue problems for the curl operator that includes, in particular, the approximation of the helicity of a bounded domain. It exploits a tree-cotree decomposition of the graph relating the degrees of freedom of the Lagrangian finite elements and those of the first family of Nédélec finite elements to reduce significantly the dimension of the algebraic eigenvalue problem to be solved. The algorithm is well adapted to domains of general topology. Numerical experiments, including a not simply connected domain with a not connected boundary, are presented in order to assess the performance and generality of the method.
- PublicationDivergence-free finite elements for the numerical solution of a hydroelastic vibration problem(Numerical Methods for Partial Differential Equations, 2023)
;Alonso-Rodríguez, Ana; ;De Los Santos ,EduardoRodríguez , RodolfoIn this paper, we analyze a divergence-free finite element method to solve a fluid–structure interaction spectral problem in the three-dimensional case. The unknowns of the resulting formulation are the fluid and solid displacements and the fluid pressure on the interface separating both media. The resulting mixed eigenvalue problem is approximated by using appropriate basis of the divergence-free lowest order Raviart–Thomas elements for the fluid, piecewise linear elements for the solid and piecewise constant elements for the interface pressure. It is proved that eigenvalues and eigenfunctions are correctly approximated and some numerical results are reported in order to assess the performance of the method. - PublicationAn augmented mixed finite element method for the Navier-Stokes equations with variable viscosity(SIAM Journal on Numerical Analysis, 2016)
; ;Gatica, Gabriel ;Oyarzúa, RicardoTierra, GiordanoA new mixed variational formulation for the Navier--Stokes equations with constant density and variable viscosity depending nonlinearly on the gradient of velocity, is proposed and analyzed here. Our approach employs a technique previously applied to the stationary Boussinesq problem and to the Navier--Stokes equations with constant viscosity, which consists firstly of the introduction of a modified pseudostress tensor involving the diffusive and convective terms, and the pressure. Next, by using an equivalent statement suggested by the incompressibility condition, the pressure is eliminated, and in order to handle the nonlinear viscosity, the gradient of velocity is incorporated as an auxiliary unknown. Furthermore, since the convective term forces the velocity to live in a smaller space than usual, we overcome this difficulty by augmenting the variational formulation with suitable Galerkin-type terms arising from the constitutive and equilibrium equations, the aforementioned relation defining the additional unknown, and the Dirichlet boundary condition. The resulting augmented scheme is then written equivalently as a fixed point equation, and hence the well-known Schauder and Banach theorems, combined with classical results on bijective monotone operators, are applied to prove the unique solvability of the continuous and discrete systems. No discrete inf-sup conditions are required for the well-posedness of the Galerkin scheme, and hence arbitrary finite element subspaces of the respective continuous spaces can be utilized. In particular, given an integer K >_0, piecewise polynomials of degree _< K for the gradient of velocity, Raviart--Thomas spaces of order K for the pseudostress, and continuous piecewise polynomials of degree _< K + 1 for the velocity, constitute feasible choices. Finally, optimal a priori error estimates are derived, and several numerical results illustrating the good performance of the augmented mixed finite element method and confirming the theoretical rates of convergence are reported. - PublicationBasis for high order divergence-free finite element spaces(Elsevier, 2024)
; ;Alonso-Rodríguez, A. ;De Los Santos, E.Rapetti, F.A method classically used in the lower polynomial degree for the construction of a finite element basis of the space of divergence-free functions is here extended to any polynomial degree for a bounded domain without topological restrictions. The method uses graphs associated with two differential operators: the gradient and the divergence, and selects the basis using a spanning tree of the first graph. It can be applied for the two main families of degrees of freedom, weights and moments, used to express finite element differential forms.